单细胞转录组数据分析基于细胞类型的高级分析
——基于细胞类型的高级分析 单细胞转录组数据分析
上节回顾(从FASTQ到基因-细胞表达矩阵)方案一UMI-tools+STAR+featureCountsStep1:getdataUMI-toolsStep2:ldentifycorrectcellbarcodesStep3:ExtractbarcdoesandUMlsandaddtoreadnamesSTAR:ultrafastuniversal RNA-seqalignerrenkow',Chris ZaleskitStep4:Mapreads=SUBREADingerasiences, Menlo Park, CA, USAStep5:Assignreadsto genesSubread package: high-performanceread alignment, quantificatiorStep6:Count UMlspergenepercelland mutation discovery方案二:CellRangerLibraryCellSampleChromiumChipGEMWellSequencingCellRangerPipelinePartdceeBCLFASTQeee##mkfastqcountOutput88888888FASTOGEX#0000e>上节回顾数据整合差异基因富集分析拟时序分析细胞通讯
上节回顾(从FASTQ到基因-细胞表达矩阵) Step 1: get data Step 2: Identify correct cell barcodes Step 3: Extract barcdoes and UMIs and add to read names Step 4: Map reads Step 5: Assign reads to genes Step 6: Count UMIs per gene per cell 上节回顾 数据整合 差异基因富集分析 拟时序分析 细胞通讯 方案一:UMI-tools + STAR + featureCounts 方案二:CellRanger
上节回顾(从表达矩阵到细胞类型注释)质控Qualitycontrol·基因数和UMI数、线粒体比例:双细胞判断、去除空液滴、去除环境RNA、细胞周期判断(optional)Cell2CellNCelll1Gene12313标准化Normalization231Gene2特征基因选择Featureselection11418Gene3基于标记基因·中心化Scaling10?.."....0.降维Dimensionalityreduction025GeneM·聚类ClusteranalysisPlatelet细胞类型注释Celltypeannotation-10s0UMAP_1>上节回顾数据整合拟时序分析》差异基因富集分析细胞通讯
上节回顾(从表达矩阵到细胞类型注释) • 质控 Quality control • 基因数和UMI数、线粒体比例 • 双细胞判断、去除空液滴、去除环境RNA、细胞周期判断(optional) • 标准化 Normalization • 特征基因选择 Feature selection • 中心化 Scaling • 降维 Dimensionality reduction • 聚类 Cluster analysis • 细胞类型注释 Cell type annotation 基于标记基因 上节回顾 数据整合 差异基因富集分析 拟时序分析 细胞通讯
上节回顾(PBMC数据)PBMC(peripheralbloodmononuclearcell),其主要细胞类型为血液里边具有单个核的细胞,主要包括淋巴细胞(T细胞、B细胞和NK细胞),单核细胞,吞噬细胞,树突状细胞和其他少量细胞类型pbmc1k基于标记基因pbmc3k基于标记基因COIT10-10Platelet0De-5-10-5-1005-1010200UMAP_1UMAP_1>上节回顾数据整合差异基因富集分析拟时序分析细胞通讯
上节回顾(PBMC数据) PBMC (peripheral blood mononuclear cell),其主要细胞类型为血液里边具有单个核的细胞,主要包括淋巴细胞(T细胞、B 细胞和NK细胞),单核细胞,吞噬细胞,树突状细胞和其他少量细胞类型。 上节回顾 数据整合 差异基因富集分析 拟时序分析 细胞通讯 pbmc1k 基于标记基因 pbmc3k 基于标记基因
SEURATRtoolkitfor singlecell genomics上节回顾页(Seurat包介绍)AnalysisofspatialdatasetsAnalysis.of.spatialdatasetsscRNA-seg.IntegrationCross-modality Bridge(maging-based)(Sequencing-based)SATIJA LABIntegratior红@scvi-toolsLearn to explore spatially-resolveddataLearn to explore spatially-resolvedIntegrate scRNA-segdatasets usingaMap scATAC-seq onto an scRNA-seqfrommultiplexedimagingtechnologies,transcriptomicdatawithexamplesfromvarietyofcomputational methods.reference using amulti-omic bridgeincludingMERSCOPEXenlum,CosMx10xVislumandSlide-seqv2.dataset.SMI,and CODEXGOGOGOGOIntroductiontoscRNA-segMapping and annotating gueryFast integrationusing reciprocalGuidedtutorial-2.700PBMCsMultimodalanalysisIntegrationdatasetsPCA(BPCA)43543An introduction to integrating scRNA-Learn how to map a query scRNA-seqIdentify anchors using the reciprocalAbasic overviewof SeuratthatincludesAn introduction to working withmulti-PCA (rPCA)workflow,whichperformsaseqdatasetsInorderto identifyanddataset ontoareference In ordertomodal datasets in Seurat.anintroductionto common analyticalcompare shared cell types acrossautomatetheannotationandfasterand moreconservativeworkflows.experiments.visualization of query cells.Integration,GOGOGOGOGO>上节回顾数据整合差异基因富集分析拟时序分析细胞通讯
上节回顾(Seurat包介绍) 上节回顾 数据整合 差异基因富集分析 拟时序分析 细胞通讯