Alternative solution ngy=k(l+y k12+I02+m2(1) VEOR (2) mg=kl (3) Take a derivative of y with respect to t ky_=0 d t- m+ y R2
Alternative solution 2 2 2 2 2 1 2 1 2 1 ( ) 2 1 mgy = k l + y − kl + I + mv v =R (1) (2) Take a derivative of y with respect to t mg = kl (3) o y 0 2 2 2 = + + R m I ky dt d y
2. kinematics equation 2.1 Equation d +a2x=0 at Solution:x=A cos(@t+p) db Asin(at +o) dt dx dt A@ cos (at
0 2 2 2 + x = dt d x Solution: x = Acos(t +) = = −A sin(t +) dt dx v cos( ) 2 2 2 = = −A t + dt d x a 2.1 Equation 2. kinematics equation