Table of Contents Uncertainty Probability Syntax and Semantics Inference Independence and Bayes'Rule Bayesian network Graphical models Bayesian networks Inference in Bayesian networks 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table of Contents Uncertainty Probability Syntax and Semantics Inference Independence and Bayes’ Rule Bayesian network Graphical models Bayesian networks Inference in Bayesian networks
Syntax Basic element:random variable(随机变量)】 Similar to propositional logic:possible worlds defined by assignment of values to random variables. ,Boolean random variables(布尔随机变量) e.g,Cavity(牙洞)(do I have a cavity?) ,Discrete random variables(离散随机变量) e.g.,Weather is one of sunny,rainy,cloudy,snow Domain values must be exhaustive(穷尽的)and mutually exclusive(互斥的) Continuous random variables(连续随机变量) e.g.,Temp=21.6;also allow,e.g.,Temp 22.0 口卡回t·三4色,是分Q0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Syntax Basic element: random variable(随机变量) Similar to propositional logic: possible worlds defined by assignment of values to random variables. ▶ Boolean random variables(布尔随机变量) e.g., Cavity(牙洞)(do I have a cavity?) ▶ Discrete random variables(离散随机变量) e.g., Weather is one of ⟨ sunny, rainy, cloudy, snow ⟩ Domain values must be exhaustive(穷尽的)and mutually exclusive(互斥的) ▶ Continuous random variables(连续随机变量) e.g., Temp=21.6; also allow, e.g., Temp < 22.0
Syntax Elementary proposition (constructed by assignment of a value to a random variable: e.g.,Weather sunny,Cavity false (abbreviated as-cavity) Complex propositions formed from elementary propositions and standard logical connectives. e.g.,Weather sunny V Cavity false 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Syntax Elementary proposition(命题) constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as ¬ cavity) Complex propositions formed from elementary propositions and standard logical connectives. e.g., Weather = sunny ∨ Cavity = false
Syntax Atomic event:A complete specification of the state of the world about which the agent is uncertain 原子事件:对智能体无法确定的世界状态的一个完整的详细描 述。 e.g.,if the world consists of only two Boolean variables Cavity and Toothache,then there are 4 distinct atomic events: Cavity false A Toothache false Cavity false A Toothache true Cavity true A Toothache false Cavity true A Toothache true Atomic events are mutually exclusive(互斥)and exhaustive(穷尽 的) 口卡回t·三色,是分Q0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Syntax Atomic event: A complete specification of the state of the world about which the agent is uncertain 原子事件:对智能体无法确定的世界状态的一个完整的详细描 述。 e.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events: ▶ Cavity = false ∧ Toothache = false ▶ Cavity = false ∧ Toothache = true ▶ Cavity = true ∧ Toothache = false ▶ Cavity = true ∧ Toothache = true Atomic events are mutually exclusive (互斥) and exhaustive(穷尽 的)
Axioms(公理)of probability For any propositions A,B ·0≤P(A≤1 P(true)=1 and P(false)=0 P(AVB)=P(A)+P(B)-P(AAB) True B 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Axioms(公理)of probability For any propositions A, B ▶ 0 ≤ P(A) ≤ 1 ▶ P(true) = 1 and P(false) = 0 ▶ P(A ∨ B) = P(A) + P(B) − P(A ∧ B)