Uncertainty and Bayesian Networks 吉建民 USTC jianminOustc.edu.cn 2022年4月21日 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Uncertainty and Bayesian Networks 吉建民 USTC jianmin@ustc.edu.cn 2022 年 4 月 21 日
Used Materials Disclaimer:本课件采用了S.Russell and P.Norvig's Artificial Intelligence-A modern approach slides,徐林莉老师课件和其他网 络课程课件,也采用了GitHub中开源代码,以及部分网络博客 内容 口卡4三4色进分QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Used Materials Disclaimer: 本课件采用了 S. Russell and P. Norvig’s Artificial Intelligence –A modern approach slides, 徐林莉老师课件和其他网 络课程课件,也采用了 GitHub 中开源代码,以及部分网络博客 内容
课程大纲 第一部分:人工智能概述/Introduction and Agents (chapters 1,2) 第二部分:问题求解/Search(chapters3,4,5,6) ~第三部分:知识与推理/Logic(chapters7,8,9,10,11,12) 第四部分:不确定知识与推理/Uncertainty(chapters 13, 14,15,16,17) 第五部分:学习/Learning(chapters18,19,20,21) 第六部分:应用/Application(chapters22,23,24,25) 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 课程大纲 ▶ 第一部分:人工智能概述 / Introduction and Agents (chapters 1, 2) ▶ 第二部分:问题求解 / Search (chapters 3, 4, 5, 6) ▶ 第三部分:知识与推理 / Logic (chapters 7, 8, 9, 10, 11, 12) ▶ 第四部分:不确定知识与推理 / Uncertainty (chapters 13, 14, 15, 16, 17) ▶ 第五部分:学习 / Learning (chapters 18, 19, 20, 21) ▶ 第六部分:应用 / Application (chapters 22, 23, 24, 25)
Table of Contents Uncertainty Probability Syntax and Semantics Inference Independence and Baves'Rule Bayesian network Graphical models Bayesian networks Inference in Bayesian networks 口卡回t·三4色,是分Q0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table of Contents Uncertainty Probability Syntax and Semantics Inference Independence and Bayes’ Rule Bayesian network Graphical models Bayesian networks Inference in Bayesian networks
Uncertainty Let action At="leave for airport t minutes before flight" Will At get me there on time? Problems: ~partial observability(部分可观察性,e.g,road state,other drivers'plans,etc.) noisy sensors (e.g.,traffic reports) uncertainty in action outcomes(e.g.,flat tire,etc.) immense complexity of modeling and predicting traffic 4口◆4⊙t1三1=,¥9QC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Uncertainty Let action At = “leave for airport t minutes before flight” Will At get me there on time? Problems: ▶ partial observability(部分可观察性,e.g., road state, other drivers’ plans, etc.) ▶ noisy sensors (e.g., traffic reports) ▶ uncertainty in action outcomes (e.g., flat tire, etc.) ▶ immense complexity of modeling and predicting traffic