2. Pressure Formula of ideal gases. 分子平均平动动能 average kinetic energy K=-m0 p==nK P∝n分子数密度越大,压强越大 P∝k分子运动得越激烈,压强越大
2. Pressure Formula of Ideal Gases: 分子平均平动动能average kinetic energy 2 2 1 K = mv p nK 3 2 = P n 分子数密度越大,压强越大; P K 分子运动得越激烈,压强越大
3. average translational kinetic energy of molecules 理想气体压强公式p3 nK 理想气体状态方程P=nkT K=-mv==kT 温度的微观意义 (2)热力学温度是分子平均平动动能的量度。温度反映 了物体内部分子无规则运动的激烈程度。 The higher the temperature, according to kinetic theory, the faster molecules are moving on the average
3. average translational kinetic energy of molecules p = nkT 理想气体压强公式 理想气体状态方程 K m k T 2 3 2 1 2 = v = p nK 3 2 = 温度的微观意义 (2)热力学温度是分子平均平动动能的量度。温度反映 了物体内部分子无规则运动的激烈程度。 The higher the temperature, according to kinetic theory, the faster molecules are moving on the average
4 root-mean- square speed(方均根速率) 1-2U m02==kT v=3kT/m 3kT 3kT
4 root-mean-square speed (方均根速率) 3kT / m 2 m k T v = 2 3 2 1 2 v = k T m 2 3k T 3 vrms = v = =
816-2 Distribution of Molecular Speeds(388-390) 了解 77t 1麦氏分布函数f()=4丌(,) e2h7,2 2丌kT Marwell's probability distribution function 目6 f()= N Physical meaning: s日 在dU速率区间内 rms Speed v分子出现的概率
§16-2 Distribution of Molecular Speeds (388-390) 了解 Maxwell’s probability distribution function 3 2 2 2 2 ) e 2π (v) 4π( v v kT m kT m f − 1.麦氏分布函数 = v v Nd dN f ( ) = Physical Meaning: 在 dv 速率区间内 分子出现的概率
2. Three kinds of special Speeds p389 (1) The Average speed算术平均速率 8/T 7=vf(0)d V元m KT RT 7≈1.60 =1.60 VM
2. Three kinds of special Speeds p389 (1) The Average Speed 算术平均速率: m kT f π 8 ( )d 0 = = v v v v M RT m kT v 1.60 =1.60