§2 Bisection method 试位法/ Regula Falsi Method Is it really better than Bisection method? (b,∫(b) (a+b)/2 f∫(a) (a,(a) X=a f∫(b)-∫(a) 注:试位法每次迭代比二分法多算一次乘法,而且不保证 收敛
➢ 试位法 /* Regula Falsi Method */ a b (a+b)/2 x* (a, f (a)) (b, f (b)) (b a) f b f a f a x a − − = − ( ) ( ) ( ) Is it really better than Bisection Method? 注:试位法每次迭代比二分法多算一次乘法,而且不保证 收敛。 §2 Bisection Method
§3迭代法/ Fixed-Point iteration 等价变换 ∫(x)=0 x=g(x) f(x)的根 g(x)的不动点 从一个初值x出发,计算x1=g(x),x2=g(x1),…, 思xk+1=g(x),… 若{x}收敛,即存在x使得 路加mx=x*,且g连续,则由 lim x=呵知x) gx*),即x是g的不动点,也就是f的根 Oh yeah? who tells you that the method is convergent? id blem?
§3 迭代法 /* Fixed-Point Iteration */ f (x) = 0 x = g (x) 等价变换 f (x) 的根 g (x) 的不动点 思 路 从一个初值 x0 出发,计算 x1 = g(x0 ), x2 = g(x1 ), …, xk+1 = g(xk ), … 若 收敛,即存在 x* 使得 ,且 g 连续,则由 可知 x* = g(x* ),即x* 是 g 的不动点,也就是f 的根。 k k=0 x lim x x * k k = → ( ) k k k k x g x → + → lim 1 = lim So basically we are done! I can’t believe it’s so simple! What’s the problem? Oh yeah? Who tells you that the method is convergent?