第一节流体静力学基木方式 表 =f(P、7) 压力对液体密度的影响很小,通常可忽略不计,故常称液体为不可压缩的流体。温度对 流体的密度有一定影响,故在手册或书刊中对流体的密度数据都注明了温度的条件。 气体因具有可压缩性及膨胀性,其密度随温度和压力有较大的变化,通常在温度不太 低,压强不太高的情况下,气体的密度可近似地用理想气体状态方程式进行计算。 各种气体和液体密度可从手册里查得,其值为纯物质的密度,而混合物的平均密度 还得用以下公式进行计算。 对于液体混合物,各组分浓度常用质量分数来表示。现以1kg混合液体为基准,若各组 分在混合前后其体积不变,则1kg混合物体积等于各组分单独存在时的体积之和,即 1xmA,十…+ 式中pA4、D…pn液体混合物中各组分的密度kg/m 液体混合物中各组分的质量分数。 对于气体混合物,各组分的浓度常用体积分数来表示。现以1m3混合气体为基准,若 各组分在混合前后其质量不变,则1m3混合气体的质量等于各组分的质量之和,即 Pm=PAIvA+PB Cva+..+prey (1-3) 式中xA,xB…,xn气体混合物中各组分的体积分数 气体混合物的平均摩尔质量Mm可按下式计算,即 Mn=MAYA+MBYb+…+MnYn (1-4) 式中MA,MB,…,M气体混合物中各组分的摩尔质量,kg/kmol YA,FB,…,Yn气体混合物中各组分的摩尔分数。 单位质量流体具有的体积,称为流体的比体积,即流体的比体积是密度的倒数。 压力 流体垂直作用于单位面积上的力,称为流体的静压力,简称压强,习惯上称为压力 达式为 式中p——流体的静压力,Pa 垂直作用于流体表面上的力,N3 A—作用面的面积,m2 在SI中,压力的单位是Pa,称为帕斯卡但习惯上还采用其他单位;amn(标准大气压), 某流体柱高度、bar(巴)或kgf/cm2等,它们之间的换算关系为 latm=1. 033kgf/cm2=760mmHg=10.33mH,O 1.0133bar=1.0133×106P 工程上为了使用和换算方便起见还将1kgf/cm2近似地作为1个大气压,称为1工程 大气压。于是 1kgf/cm2=735.6mmHg=10mH20=0.9807bar
第一章汽体 9.S07×10Pa 个物理大气压等于760毫米汞柱,意思是说一个物理大气压比绝对零压(或绝对真 空)高760毫米汞柱。因此,以绝对零压作起点计算压力,称为绝对压力。如果体系内绝对 压力大于1大气压时,如图1-1所示。这时读数b所反映的是流体的绝对压力与大气压力 之差,这个压力差有时叫做体系的表压。因此表压与绝对压力之间存在以下关系 绝对压力=大气压力+表压 表压=绝对压力一大气压力 测量 体系 测量 日1-1测量表压 图1-2测量真空度 当体系内的绝对压力小于1大气压时,如图1-2所示。真空表上的读数b是大气压力 与绝对压力之差,因此真空度与绝对压力之间存在如下关系 绝对压力+真空度=大气压力 表压 或 大气压线 真空度=大气压力-绝对压力 真空度 绝对压力表压与真空度关系如图1-3所示。 B绝对压力 大气压力的数值不是固定的,它随大气温度、湿 绝对压力 度和所在地区的海拔高度而不同。因此大气压力应 绝对零压线 以当地当时的气压计上读数为准。在表明压力时, 图13绝对压力、大气压力、表压必须注明绝对压力,表压还是真空度,并要注明其 与真空度的关系 单位。 例1-1在兰州操作某真空精懈塔顶的真空表读数为80×10Pa。在天津操作时,若要 求塔内维持相问的绝对压力,真空表读数应为若于。兰州地区的平均大气压力为853 10a,天津地区的平均大气压力为101.33×10Pa。 解:根据兰州地区大气压力条件,可求得操作时塔顶的绝对压力为: 绝对压力=大气压力-真空度=85300-80000300Pa 在天津操作时,要求塔内维持相同的绝对压力由于大气压力与兰州的不同,则塔顶的 真空度也不相同,其值为 真空度=大气压力一绝对压力=101330-5300=96030P 例1-2某台离心泵进、出口压力表读数分别为29330Pa(真空度)及166720Pa(表压)。 若当地大气压力为101.33×10Pa,试求它们的绝对压力各为若于? 解:泵进口绝对压力为 绝对压力=大气压力一真空度=101330-29330=72000Pa
第一节流体静力学基本方程式 泵出口绝对压力为: 绝对压力=大气压力+表压=101330+166720=268050Pa 三、流体静力学基本方程式 现在来研究处于相对静止状态的流体在重力和压力作用下处于平衡的规律。由于重力 就是地心吸力,可视为不变的,起变化的是压力。所以实质上是研究相对静止状态的流体内 鄙压力(压强)变化的规律。用于描述这一规律数学表达式,称为流体静力学基本方程式。此 方程式可通过下面方法推导而得。 图1-4所示容器中盛有密度为p的静止液体。现于液体内部任意划出一底面积为A 的垂直液柱。若以容器底为基准水平面则液柱的上、下底面与甚准水平面的垂直距离分别 为Z1和Z20 在垂直方向上作用于液柱上的力有 1)作用于上底面的压力为P2A 2)作用于下底面的压力为P2A (3)作用于整个液柱的重力为W=pA(Z1-Z2) 液柱处于静止状态时,在垂直方向上各力的代数和应为零,即 P2A-p1-pgA(Z1-22)=0 图I-4流体静力学 把上式各项除以A,于是上式便可整理为 基本方程式的推导 P2=p1+p(Z1-2) (1-6a) 设p1=、2=P、Z1-Z2=b,于是式(1-6a)可改为 p=po"pgh 式(1-6a)及(1-6b)称为流体静力学基本方程式,说明在重力作用下,静止液体内部压力 的变化规律。由式(1-6b)可见 (1)在静止液体内任一点压力的大小,与该点距液面的深度λ有关。越深则压力越 (2)在静止液体内同-水平面上的各点,因其深度相同,其压力相等。该压力相等的水 (3)当液体上方压力p有变化时,必会引起液体内部各点压力P发生同样大小的变 ,称为等压面 (4)式(1-6b)可改写为 上式说明压力或压力差的大小可以用液体柱高度来表示。这就是前面所介绍的压力可 以用mmHg,mmH2O等单位来计量依据。当用液体柱高度来表示压力或压力差时,必须注 明是何种液体 式(1-6a)及(1-6b)是以液体为例推导出来的。液体的密度可视为常数,而气体的密度 除随温度变化外还随压力而变化,但考虑到气体密度随容器高低变化甚微,一般可视为常 数。故流体静力学基本方程式亦适用于气体。 值得注意的是,上述两式只能用于静止的连通着的同一种流体内部,因为它们是根据静
止的间-种连续的液柱导出的。 例1-3本题附图所示的开口容器内盛有油和水。油层高度h=0.7m、密度p2=800k /m3,水层高度(指油、水羿与小孔附距离)h2=0.im、密度p2=3100kg/m3 ①兆断下列两关系是否成立,即 pa=pa ②计算水在玻璃管的高度h B hz A (1)yA=p∴的关系成立。因A及A′两点在静止的 连通着的同一种流体内,并在同一水平面上 Pa=p的关系不能成立。因B及B两点虽在静止 例1-3附图 流体的同一水平面上,但不是连通着的同一种流体。 (2)玻瑙管内水的高度h由上面讨论知,p4=p;,而pA与p4都可以用流体静力学基 本方程式计算,即: pA=p+pgh 于是 pa+p,gh+p2gh2=pa+peg 简化上式并将已知值代入,得 800×0.7+1000×0,6=1000l 解得 h=1.16m 四、流体静力学基本方程式的应用 (一)压力与压力差测量 测量压力的仪表很多,通常,在实验室和工厂控制室用得较多的是测量较低压力的仪 表。现仅介绍以流体静力学基本方程式为依据的测压仪器,这种测压仪器统称为液柱压差 计,可用来测量流体的压力或压力差,有如下几种。 1.U管压差计 U管压差计的结构如图1-5所示,它是…根U形玻璃管,内装有液体作为指示液。指示 液要与被测流体不互溶,不起化学作用,五其密 度应大于被测流体的密度。 当测量管道中1-1′与2-2两裁面处流体 的压力差时,可将U管两端分别与1-1′及2-2 两截面相连通。设流体作用在两截面的压力 和p2且p1>p2,则使在左支管内的指示液液面 下降,而右支管内的指示液液面上升,在标尺上 显示出读数B,如图1-5所示。由读数B便可 求得U形管两端的流体压力差。 设a-“液面上作用的压力分别为P和p2, 因为在相问流体的同一水平面上,所以a与 应相等。由图1-5看出,Pa为1加上流体 A1-5U差计
第一节流体静力学基车方工式 柱高度(m+R)所产生的压力,即: pa=pI+(m+R)Png 而p’为P2加上流体柱高度〃与指示液高度B所产生压力,即 Pa/=p+pugn+ 因为pa=pa 所以 pi+pBg(m+R)=p2+pBgn+pgR 化简 △p=p1-p2=(P4-p)9R 式中p1、P2—流体的压力,Pa 4p—压力差,Pa 卩A—-指示液密度,kg/m3 流体的密度,kg/m3 B—指示液面高度差(即读数),m。 式(1-7a)表明,读数B与流体压力差Ap成正比。如果当压力差为某一定值时,指示 液与流体密度差(pA-pB)愈小,则U管压差计上所显示的读数R愈大。因此,当被测量的 流体压力差4p较小时,为了表示出明显的读数,减小测量的误差,往往采用密度较小的指 示液。 如果被测量流体为气体时,气体的密度要比液体的密度小得多,即pA-p≈pa,于是,对 于气体,式(1-7a)变为 P1-p2≈pAgB (1-7b) 除了上述外,还有如图1-6所示倒置U管压差计。它只能用来测液体的压力差,用被 测液体作指示液。在图中看出,p2和p2的压力差出液面高度差R表示,在两支玻璃管上面 的空间充满空气,空气可从旋塞A通入或排出,以便调整液柱压差计中液体的水平面 U管压差计的测量范围为100~1500mm液柱 U管压差计的特点是结构简单,测量准确价格便宜;但玻璃管容易破碎,个能承受较 高的工作压力,测量范围狭小,读数不便,通常用于测量较低压力差。 液体 图 U管压差计 图1-7单管压差计 2,单管压差计(又称杯形压差计) 单管压差计如图1-7所示,是U管压差计的一种变形。一支玻璃管用一个大截面杯形