第二章水 在人体内,水不仅是构成机体的主要成分,而且是维持生命活动、调节代谢 过程不可缺少的重要物质。例如,水使人体体温保持稳定,因为水的热容量大, 旦人体内热量增多或减少也不致引起体温岀现大的波动。水的蒸发潜热大,蒸 发少量汗水即可散发大量热能,通过血液流动使全身体温平衡。水是一种溶剂, 能够作为体内营养素运输、吸收和废弃物排泄的载体,可作为化学和生物化学反 应物或反应介质,也可作为一种天然的润滑剂和增塑剂,同时又是生物大分子化 合物构象的稳定剂,以及包括酶催化在内的大分子动力学行为的促进剂。此外 水也是植物进行光合作用过程中合成碳水化合物所必需的物质。可以清楚地看 到,生物体的生存是如此显著的依赖于水这个无机小分子。 水是食品中非常重要的一种成分,也是构成大多数食品的主要组分,各种食 品都有能显示其品质特性的含水量(表2-1)。水的含量、分布和取向不仅对食品 的结构、外观、质地、风味、新鲜程度和腐败变质的敏感性产生极大的影响,而 且对生物组织的生命过程也起着至关重要的作用。水在食品贮藏加工过程中作为 化学和生物化学反应的介质,又是水解过程的反应物。通过干燥或增加食盐、糖 的浓度,可使食品中的水分除去或被结合,从而有效地抑制很多反应的发生和微 生物的生长,以延长食品的货架期。水与蛋白质、多糖和脂类通过物理相互作用 影响食品的质构,在大多数新鲜食品中,水是最主要的成分,若希望长期贮藏这 类食品,只要采取有效的贮藏方法控制水分就能够延长保藏期,无论采用普通 方法脱水或是低温冷冻干燥脱水,食品和生物材料的固有特性都会发生很大的变 化,然而任何企图使脱水食品恢复到它原来的状态(复水和解冻)的尝试都未获得 成功。下面我们将讨论水和冰的一些特性,以控制水在食品加工贮藏过程中的变 化和影响 第一节水和冰的物理特性 水与元素周期表中邻近氧的某些元素的氢化物,例如CH4、NH3、HF、H2S H2Se和H2Te等的物理性质比较,除了粘度外,其他性质均有显著差异。水的熔点、 沸点比这些氢化物要高得多,介电常数、表面张力、热容和相变热(熔融热、蒸 发热和升华热)等物理常数也都异常高,但密度较低。此外,水结冰时体积增大 表现出异常的膨胀特性。水的热导值大于其他液态物质,冰的热导值略大于非金 属固体。0℃时冰的热导值约为同一温度下水的4倍,这说明冰的热能传导速率 比生物组织中非流动的水快得多。从水和冰的热扩散值可看出水的固态和液态的 温度变化速率,冰的热扩散速率为水的9倍;在一定的环境条件下,冰的温
- 1 - 第二章 水 在人体内,水不仅是构成机体的主要成分,而且是维持生命活动、调节代谢 过程不可缺少的重要物质。例如,水使人体体温保持稳定,因为水的热容量大, 一旦人体内热量增多或减少也不致引起体温出现大的波动。水的蒸发潜热大,蒸 发少量汗水即可散发大量热能,通过血液流动使全身体温平衡。水是一种溶剂, 能够作为体内营养素运输、吸收和废弃物排泄的载体,可作为化学和生物化学反 应物或反应介质,也可作为一种天然的润滑剂和增塑剂,同时又是生物大分子化 合物构象的稳定剂,以及包括酶催化在内的大分子动力学行为的促进剂。此外, 水也是植物进行光合作用过程中合成碳水化合物所必需的物质。可以清楚地看 到,生物体的生存是如此显著的依赖于水这个无机小分子。 水是食品中非常重要的一种成分,也是构成大多数食品的主要组分,各种食 品都有能显示其品质特性的含水量(表 2-1)。水的含量、分布和取向不仅对食品 的结构、外观、质地、风味、新鲜程度和腐败变质的敏感性产生极大的影响,而 且对生物组织的生命过程也起着至关重要的作用。水在食品贮藏加工过程中作为 化学和生物化学反应的介质,又是水解过程的反应物。通过干燥或增加食盐、糖 的浓度,可使食品中的水分除去或被结合,从而有效地抑制很多反应的发生和微 生物的生长,以延长食品的货架期。水与蛋白质、多糖和脂类通过物理相互作用 影响食品的质构,在大多数新鲜食品中,水是最主要的成分,若希望长期贮藏这 类食品,只要采取有效的贮藏方法 控制水分就能够延长保藏期,无论采用普通 方法脱水或是低温冷冻干燥脱水,食品和生物材料的固有特性都会发生很大的变 化,然而任何企图使脱水食品恢复到它原来的状态(复水和解冻)的尝试都未获得 成功。下面我们将讨论水和冰的一些特性,以控制水在食品加工贮藏过程中的变 化和影响。 第一节 水和冰的物理特性 水与元素周期表中邻近氧的某些元素的氢化物,例如CH4、NH3、HF、H2S、 H2Se和H2Te等的物理性质比较,除了粘度外,其他性质均有显著差异。水的熔点、 沸点比这些氢化物要高得多,介电常数、表面张力、热容和相变热(熔融热、蒸 发热和升华热)等物理常数也都异常高,但密度较低。此外,水结冰时体积增大, 表现出异常的膨胀特性。水的热导值大于其他液态物质,冰的热导值略大于非金 属固体。0℃时冰的热导值约为同一温度下水的 4 倍,这说明冰的热能传导速率 比生物组织中非流动的水快得多。从水和冰的热扩散值可看出水的固态和液态的 温度变化速率,冰的热扩散速率为水的 9 倍;在一定的环境条件下,冰的温
表2-1部分食品的含水量 含水量(% 肉类 肉 53~60 牛肉(碎块) 鸡(无皮肉) 鱼(肌肉蛋白) 65~81 水果 香蕉 浆果、樱桃、梨、葡萄、猕猴桃、柿子、榅桲、菠萝 苹果、桃、桔、葡萄柚、甜橙、李子、无花果 草莓、杏、椰子 90~95 蔬菜 青豌豆、甜玉米 74~80 甜菜、硬花甘蓝、胡萝卜、马铃薯 芦笋、青大豆、大白菜、红辣椒、花菜、莴苣、西红柿、西瓜 90~95 谷物 全粒谷物 10~12 面粉、粗燕麦粉、粗面粉 乳制品 奶油 山羊奶 奶酪(含水量与品种有关) 40~75 奶粉 冰淇淋 人造奶油 焙烤食品 面包 35~45 饼干 馅饼 43~59 糖及其制品 蜂蜜 果冻、果 蔗糖、硬糖、纯巧克力 度变化速率比水大得多。水和冰无论是热传导或热扩散值都存在着相当大的差 异,因而可以解释在温差相等的情况下,为什么生物组织的冷冻速度比解冻速度
- 2 - 表 2-1 部分食品的含水量 食 品 含水量(%) 肉类 猪肉 牛肉(碎块) 鸡(无皮肉) 鱼(肌肉蛋白) 53~60 50~70 74 65~81 水果 香蕉 浆果、樱桃、梨、葡萄、猕猴桃、柿子、榅桲、菠萝、 苹果、桃、桔、葡萄柚、甜橙、李子、无花果 草莓、杏、椰子 75 80~85 85~90 90~95 蔬菜 青豌豆、甜玉米 甜菜、硬花甘蓝、胡萝卜、马铃薯 芦笋、青大豆、大白菜、红辣椒、花菜、莴苣、西红柿、西瓜 谷物 全粒谷物 面粉、粗燕麦粉、粗面粉 乳制品 奶油 山羊奶 奶酪(含水量与品种有关) 奶粉 冰淇淋 人造奶油 74~80 80~90 90~95 10~12 10~13 15 87 40~75 4 65 15 焙烤食品 面包 饼干 馅饼 35~45 5~8 43~59 糖及其制品 蜂蜜 果冻、果酱 蔗糖、硬糖、纯巧克力 20 ≤35 ≤1 度变化速率比水大得多。水和冰无论是热传导或热扩散值都存在着相当大的差 异,因而可以解释在温差相等的情况下,为什么生物组织的冷冻速度比解冻速度
更快。 表2-2水和冰的物理常数 物理量名称 物理常数值 相对分子质量 180153 相变性质 熔点(101.3k 沸点(101.3kpa 100.000℃ 临界温度 373.99℃ 临界压力 22 14Mpa(218.atm) 三相点 0.01℃和611.73pa(4589mmHg) 熔化热(0℃) 6.012KJ(1. 436Kcal)/mol 蒸发热(100℃) 40.657KJ(9.711Kcal)/mol 升华热(0℃) 0.91KJ(12.06Kcal)mol 其他性质 20℃ 0℃ 0℃(冰 20℃(冰) 密度(g/cm3) 0.99821 0.999840.9168 0.9193 粘度(pa 1002×1031.793×103 界面张力(相对于空气)(N/m) 7275×1037564×103 蒸汽压(kpa) 2.3388 0.6113 0.6113 0.103 热容量(J/g·k) 4.1818 4.2176 2.1009 19544 热传导(液体)Wm·k) 0.5984 0.5610 2.240 2.433 热扩散系数(m2S) 14×10713×107117×107118×107 介电常数 80.20 87.90 ~98 注:本表引自 Franks,F.等, Water- A comprehensive treatise 6 Volumes, Plenum press, New York 第二节水和冰的结构 水分子 1.水分子的结构 水的物理性质表明,水分子之间存在着很强的吸引力,水和冰在三维空间中 通过强氢键缔合形成网络结构。为了解释这些特性,首先从研究单个水分子的性 质开始,然后再讨论一小簇水分子。从分子结构来看,水分子中氧的6个价电子 参与杂化,形成4个SP3杂化轨道,两个氢原子接近氧的两个SP成键轨道(d 8′,中4′)结合成两个σ共价键(具有40%离子特性),即形成一个水分子,每个 键的离解能为4614×10KJ/mol(110.2kcal/mol),氧的两个定域分子轨道对称地
- 3 - 更快。 表 2-2 水和冰的物理常数 物 理 量 名 称 物 理 常 数 值 相对分子质量 相变性质 熔点(101.3kpa) 沸点(101.3kpa) 临界温度 临界压力 三相点 熔化热(0℃) 蒸发热(100℃) 升华热(0℃) 其他性质 密度(g/cm3 ) 粘度(pa ·sec) 界面张力(相对于空气)(N/m) 蒸汽压(kpa) 热容量(J/g·k) 热传导(液体)(W/m· k) 热扩散系数(m2 /S) 介电常数 18.0153 0.000℃ 100.000℃ 373.99℃ 22.14Mpa(218.6atm) 0.01℃和 611.73pa(4.589mmHg) 6.012KJ(1.436Kcal)/mol 40.657KJ(9.711Kcal)/mol 50.91KJ(12.06Kcal)/mol 20℃ 0℃ 0℃(冰) -20℃(冰) 0.99821 0.99984 0.9168 0.9193 1.002×10-3 1.793×10-3 ─ ─ 72.75×10-3 75.64×10-3 ─ ─ 2.3388 0.6113 0.6113 0.103 4.1818 4.2176 2.1009 1.9544 0.5984 0.5610 2.240 2.433 1.4×10-7 1.3×10-7 11.7×10-7 11.8×10-7 80.20 87.90 ~90 ~98 注:本表引自 Franks,F.等,Water-A comprehensive treatise 6 Volumes, Plenum Press, New York. 第二节 水和冰的结构 一、 水分子 1. 水分子的结构 水的物理性质表明,水分子之间存在着很强的吸引力,水和冰在三维空间中 通过强氢键缔合形成网络结构。为了解释这些特性,首先从研究单个水分子的性 质开始,然后再讨论一小簇水分子。从分子结构来看,水分子中氧的 6 个价电子 参与杂化,形成 4 个SP3 杂化轨道,两个氢原子接近氧的两个SP3 成键轨道 (ф 8′,ф4′)结合成两个σ共价键(具有 40%离子特性),即形成一个水分子,每个 键的离解能为 4.614×102 KJ/mol(110.2kcal/mol),氧的两个定域分子轨道对称地
定向在原来轨道轴的周围,因此,它保持近似四面体的结构。图2-1(a)和(b)分别 表示水分子的轨道模型和范德华半径 图2-1单个水分子的结构示意图 (a)sp2构型;(b)气态水分子的范德华半径 单个水分子(气态)的键角由于受到了氧的未成键电子对的排斥作用,压缩为 1045°,接近正四面体的角度109°28′,OH核间距0.96A,氢和氧的范德华半 径分别为12A和14A。 以上对水的一些描述显得过于简单化,主要是为了便于理解。在纯净的水中 除含普通的水分子外,还存在许多其他微量成分,如由10和H的同位素O、BOo、 H和H所构成的水分子,共有18种水分子的同位素变体;此外,水中还有离子 微粒如氢离子(以H3O存在)和氢氧根离子,以及它们的同位素变体,因此,实际 上水中总共有33种以上HOH的化学变体。同位素变体仅少量存在于水中,因此 在大多数情况下可以忽略不计。 2.水分子的缔合作用 水分子中的氢、氢原子呈Ⅴ字形排序,O一H键具有极性,所以分子中的电 荷是非对称分布的。纯水在蒸汽状态下,分子的偶极矩为184D(德拜),这种 极性使分子间产生吸引力,因此,水分子能以相当大的强度缔合。但是只根据水 分子有大的偶极矩还不能充分解释分子间为什么存在着非常大的吸引力,因为偶 极矩并不能表示电荷暴露的程度和分子的几何形状。 由于水分子在三维空间形成多重氢键键合,因而水分子间存在着很大的吸引 力。氢键(键能2~40KJ/mo)与共价键(平均键能约35KJmo)相比较,其键能很 小,键较长,易发生变化,氧和氢之间的氢键离解能约为13~25KJ/mol。 水分子中氧原子的电负性大,O一H键的共用电子对强烈地偏向于氧原子一 方,使每个氢原子带有部分正电荷且电子屏蔽最小,表现出裸质子的特征。氢- 氧成键轨道在水分子正四面体的两个轴上(见图2-1a),这两个轴代表正力线(氢键 给体部位),氧原子的两个孤对电子轨道位于正四面体的另外两个轴上,它们代 表负力线(氢键受体部位),每个水分子最多能够与另外4个水分子通过氢键结合
- 4 - 定向在原来轨道轴的周围,因此,它保持近似四面体的结构。图 2-1(a)和(b)分别 表示水分子的轨道模型和范德华半径。 图 2-1 单个水分子的结构示意图 (a) sp3 构型; (b) 气态水分子的范德华半径 单个水分子(气态)的键角由于受到了氧的未成键电子对的排斥作用,压缩为 104.5º,接近正四面体的角度 109º28′,O-H 核间距 0.96Å,氢和氧的范德华半 径分别为 1.2Å 和 1.4Å。 以上对水的一些描述显得过于简单化,主要是为了便于理解。在纯净的水中 除含普通的水分子外,还存在许多其他微量成分,如由16O和1 H的同位素17O、18O、 2 H和3 H所构成的水分子,共有 18 种水分子的同位素变体;此外,水中还有离子 微粒如氢离子(以H3O+ 存在)和氢氧根离子,以及它们的同位素变体,因此,实际 上水中总共有 33 种以上HOH的化学变体。同位素变体仅少量存在于水中,因此, 在大多数情况下可以忽略不计。 2. 水分子的缔合作用 水分子中的氢、氢原子呈 V 字形排序,O—H 键具有极性,所以分子中的电 荷是非对称分布的。纯水在蒸汽状态下,分子的偶极矩为 1.84D(德拜),这种 极性使分子间产生吸引力,因此,水分子能以相当大的强度缔合。但是只根据水 分子有大的偶极矩还不能充分解释分子间为什么存在着非常大的吸引力,因为偶 极矩并不能表示电荷暴露的程度和分子的几何形状。 由于水分子在三维空间形成多重氢键键合,因而水分子间存在着很大的吸引 力。氢键(键能 2~40KJ/mol)与共价键(平均键能约 355KJ/mol)相比较,其键能很 小,键较长,易发生变化,氧和氢之间的氢键离解能约为 13~25KJ/mol。 水分子中氧原子的电负性大,O—H键的共用电子对强烈地偏向于氧原子一 方,使每个氢原子带有部分正电荷且电子屏蔽最小,表现出裸质子的特征。氢- 氧成键轨道在水分子正四面体的两个轴上(见图 2-1a),这两个轴代表正力线(氢键 给体部位),氧原子的两个孤对电子轨道位于正四面体的另外两个轴上,它们代 表负力线(氢键受体部位),每个水分子最多能够与另外 4 个水分子通过氢键结合
得到如图22中表示的四面体排列。由于每个水分子具有相等数目的氢键给体和 受体,能够在三维空间形成氢键网络结构。因此,水分子间的吸引力比同样靠氢 键结合在一起的其他小分子要大得多(例如NH3和HF)。氨分子由3个氢给体和 个氢受体形成四面体排列,氟化氢的四面体排列只有1个氢给体和3个氢受体, 说明它们没有相同数目的氢给体和受体。因此,它们只能在二维空间形成氢键网 络结构,并且每个分子都比水分子含有较少的氢键。 图2-2四面体构型中水分子的氢键结合(虚线表示氢键,大圈和小圈分别表示氧原子 和氢原子) 如果还考虑同位素变体、水合氢离子和氢氧根离子,那么水分子间的缔合机 理就更加复杂了。水合氢离子因为带正电荷,它比非离子化的水有更大的氢键给 体潜力,氢氧根离子带负电荷,比非离子化的水有更大的氢键受体潜力(图2-3 和2-4)。 HX H CH HX 图2-3水合氢离子的结构及其和 图2-4氢氧根离子的结构和氢键结合 氢键结合的可能结构 的可能结构 (虚线表示氢键) (虚线表示氢键,HX代表溶质或水分子) 根据水在三维空间形成氢键键合的能力,可以从理论上解释水的许多性质 例如,水的热容量、熔点、沸点、表面张力和相变热都很大,这些都是因为破坏 水分子间的氢键需要供给足够的能量。水的介电常数也同样受到氢键键合的影 响。虽然水分子是一个偶极子,但单凭这一点还不能满意地解释水的介电常数的 大小。水分子之间靠氢键键合而形成的水分子簇显然会产生多分子偶极子,这将 会使水的介电常数明显增大。 冰的结构 事实上,我们对冰的结构比对水的结构了解得更透彻,因此我们首先讨论冰
- 5 - 得到如图 2-2 中表示的四面体排列。由于每个水分子具有相等数目的氢键给体和 受体,能够在三维空间形成氢键网络结构。因此,水分子间的吸引力比同样靠氢 键结合在一起的其他小分子要大得多(例如NH3和HF)。氨分子由 3 个氢给体和 1 个氢受体形成四面体排列,氟化氢的四面体排列只有 1 个氢给体和 3 个氢受体, 说明它们没有相同数目的氢给体和受体。因此,它们只能在二维空间形成氢键网 络结构,并且每个分子都比水分子含有较少的氢键。 图 2-2 四面体构型中水分子的氢键结合(虚线表示氢键,大圈和小圈分别表示氧原子 和氢原子) 如果还考虑同位素变体、水合氢离子和氢氧根离子,那么水分子间的缔合机 理就更加复杂了。水合氢离子因为带正电荷,它比非离子化的水有更大的氢键给 体潜力,氢氧根离子带负电荷,比非离子化的水有更大的氢键受体潜力(图 2-3 和 2-4)。 O H + H H O H H X H X 图 2-3 水合氢离子的结构及其和 图 2-4 氢氧根离子的结构和氢键结合 氢键结合的可能结构 的可能结构 (虚线表示氢键) (虚线表示氢键,HX 代表溶质或水分子) 根据水在三维空间形成氢键键合的能力,可以从理论上解释水的许多性质。 例如,水的热容量、熔点、沸点、表面张力和相变热都很大,这些都是因为破坏 水分子间的氢键需要供给足够的能量。水的介电常数也同样受到氢键键合的影 响。虽然水分子是一个偶极子,但单凭这一点还不能满意地解释水的介电常数的 大小。水分子之间靠氢键键合而形成的水分子簇显然会产生多分子偶极子,这将 会使水的介电常数明显增大。 二、 冰的结构 事实上,我们对冰的结构比对水的结构了解得更透彻,因此我们首先讨论冰