处理组间变异:A、B、C不同 方案的影响及机测量误差。 区组间变异:既反映了十个 总变异 区组不同的影响同时又包括 了随机测量误差 误差变异:个体差异及血白蛋白 的随机测定误差
总变异 误差变异: 个体差异及血白蛋白 的随机测定误差。 处理组间变异:A、B、C不同 方案的影响及机测量误差。 区组间变异:既反映了十个 区组不同的影响同时又包括 了随机测量误差
表9一9例9一2的方差分析表 变异来源 SS dfMS F P 组间(处理组间) 13.7080 26.8509 32.639 <0.01 区组间 1.5577 9 0.1731 0.825 >0.05 误差 3.7790 18 0.2099 总 19.0385 29
表9-9 例9-2的方差分析表 变异来源 SS df MS F P 组间(处理组间) 13.7080 2 6.8509 32.639 <0.01 区组间 1.5577 9 0.1731 0.825 >0.05 误差 3.7790 18 0.2099 总 19.0385 29
二.分析计算步骤 (1)建立假设并建立检验水准 对于处理组: H0:三个总体均数全相等,即μ1=μ2=μ3 H1:三个总体均数不等或不全相等 对于区组: H0:十个总体均数全相等 H1:十个总体均数不等或不全相等 c=0.05 (2)计算检验统计量F值
二. 分析计算步骤 (1) 建立假设并建立检验水准 对于处理组: H0: 三个总体均数全相等,即μ1= μ2= μ3 H1:三个总体均数不等或不全相等 对于区组: H0:十个总体均数全相等 H1:十个总体均数不等或不全相等 α=0.05 (2) 计算检验统计量F值
表9一10随机区组设计方差分析的计算公式 变异来源 SS V MS 处理间 ∑n民- k-1 SS处理/V处理 MS处理MS误差 区组间 Σ,- n-1 SS区组W区组 MS区组/MS误差 误差 SS总-SS处理-SS配伍V总-V处理V配伍 SS误差V误差 总 ∑x:-∑W N-1 SS N一H
表9-10 随机区组设计方差分析的计算公式 变异来源 SS v MS F 处理间 区组间 k-1 n-1 V总- v处理- v配伍 SS处理/v处理 SS区组/v区组 SS误差/v误差 MS处理/MS误差 MS区组/ MS误差 总 N-1 误差 SS总- SS处理- SS配伍 ( ) 2 n x x i i i − ( ) 2 n x x j j j − ( ) N X X − 2 2 N-1 SS总
3).确定P值并作出推断结论 以分子的自由度y处理=2为V1,分母的自由度V误差 =18 为v2,查附表3,方差分析用F界值表,F0.052,18)=2.62 F处理=32.639>F0.052,18=2.62,P<0.05。在 @=0.05水准上拒绝H0,认为三种方案的处理有差别 以分子的自由度v区组=9为1,分母的自由度V误差=18 为v2,查附表3,方差分析用F界值表.F0.059, 18)=2.00,F处理=0.825<F0.059,18)=2.00 >0.05。在0=0.05水准上不拒绝H0,还不能认为十个 区组间有差别
3). 确定P值并作出推断结论 以分子的自由度ν处理 =2为ν1,分母的自由度ν误差 =18 为ν2,查附表3,方差分析用F界值表, F0.05(2,18)=2.62, F处理=32.639> F0.05(2,18)=2.62, P <0.05。在 α=0.05水准上拒绝H0,认为三种方案的处理有差别. 以分子的自由度ν区组 =9为ν1,分母的自由度ν误差 =18 为ν2,查附表3,方差分析用F界值表, F0.05(9, 18)=2.00,F处理=0.825< F0.05(9,18)=2.00, P >0.05。在α=0.05水准上不拒绝H0,还不能认为十个 区组间有差别