基于IPSO-RELM转炉冶炼终点锰含量预测模型

分析了影响转炉冶炼终点钢水中锰含量的因素, 针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢, 预测精度低等问题, 提出了一种基于极限学习机(ELM) 算法建模的新思路, 并引入正则化以及改进粒子群优化算法(IPSO), 建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM) 的转炉终点锰含量预测模型; 应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证, 并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明, 采用IPSO-RELM方法构建的模型, 锰含量预测误差在±0. 025%范围内的命中率达到94%, 均方误差为2. 18×10-8, 拟合优度R2为0. 72, 上述三项指标均显著优于其他三类模型, 此外, 该模型还具有良好的泛化能力, 对于转炉实际冶炼过程具有一定的指导意义.
文件格式:PDF,文件大小:4.6MB,售价:3.24元
文档详细内容(约9页)
点击进入文档下载页(PDF格式)
共9页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录