基于非线性局部滤波的红外小目标检测方法

为提高复杂环境下红外小目标的检测效率,将图像分为平坦区域、边缘区域和小目标区域三种区域,并针对三种成分的特点,提出基于拉普拉斯金字塔的非线性局部滤波检测方法.首先将图像进行高斯金字塔分解,将高斯低通金字塔与原图像尺寸匹配后,相减并进行阈值操作,抑制平坦区域;其次将标记像素灰度值与其周围环域均值的最小差作为指标,滤除边界区域;最后将非线性局部滤波结果生成相应的拉普拉斯金字塔各层系数,重构得到高对比度的检测图像,利用邻域特点剔除孤立噪声点并通过简单阈值标记红外小目标.实验结果表明:与现有其他算法相比,该检测算法能够对复杂背景有效抑制,检测速度快.
文件格式:PDF,文件大小:7.51MB,售价:2.52元
文档详细内容(约7页)
点击进入文档下载页(PDF格式)
共7页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录