向量运算相关性坐标系数量积向量积复数数域8.2.2向量的坐标运算设在空间中取定了一个仿射坐标系[O;éi,é2,e3l,由于向量与其坐标之间存在一一对应的关系,向量的运算可以转化为其坐标间的运算设a=(a1,ac2,a3),6=(yi,y2,y3),入为一个实数,则a+b=(ciei+a2e2+ses)+(yiei+yze2+yses)= (ai+yi)ei+ (c2+y2)e2+(3+y3)e3Aa=A(iei+2e2+C3e3)=iei+Aa2e+Ae3所以我们有下面的坐标计算公式:(8.10)(1,2,3)+(y1,y2,y)=(i+y1,2+y2,3+y3),(8.11)入(1,2,3)=(i,入2,入3)返回全屏关闭退出11/33
þ $ '5 IX êþÈ þÈ Eê ê 8.2.2 þI$ 3m¥½ IX [O ; ~e1, ~e2, ~e3], duþÙI m3éA'X, þ$±=zÙIm$. ~a = (x1, x2, x3), ~b = (y1, y2, y3), λ ¢ê, K ~a +~b = (x1~e1 + x2~e2 + x3~e3) + (y1~e1 + y2~e2 + y3~e3) = (x1 + y1)~e1 + (x2 + y2)~e2 + (x3 + y3)~e3, λ~a = λ(x1~e1 + x2~e2 + x3~e3) = λx1~e1 + λx2~e2 + λx3~e3. ¤±·ke¡IOúªµ (x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3), (8.10) λ(x1, x2, x3) = (λx1, λx2, λx3). (8.11) 11/33 kJ Ik J I £ ¶ '4 òÑ