99md3 8 ZL 乙 乙 NI E XVW aue8d-乙83 Keld isaq isulee yoKed ajqenalype isaq enjen xewlulw asay3ly ym uon!sod 0n anow asooyp :eap] sewe8 uonewojul-1pajad 'nslulwjenep oj Keld 15ajed xewluN
Minimax games rmation erfect-info p deterministic, r fo y pla erfect P value minimax highest with osition p to move ose cho Idea: y pla est b against off y pa achievable est b = game: 2-ply E.g., MAX 2 5 14 6 4 2 8 12 3 MIN 3 A 1 A 3 A 2 A 13 A 12 A 11 A 21 A 23 A 22 A 33 A 32 A 31 2 2 3 6 6 Chapter
n uIngoI ((s)anTVA-XVW 'Q)NIN-op (s)sHossaoons u!s 'D o] 0o→n (707s)xLILO uIn3oI uoq (707S)ISHL-IVNINHL J! anjoa fippign D suIngoI (1D)s)anIVA-NIW uonounJ n umjoI ((s)anIVA-NIWN 'Q)XVW-op (ans)sHossaoons u!s 'D o] 00-→ (107s)xLITILO uIngox uoy?(7DS)ISHL-IVNIWHL J! angoa fippgn D suingoI(ans)anIVA-XVW uoqoun] ((an0)s ')LInSad)nIVA-NIW BuIzIwIxew (ns)SNOILOV u!D ay1 umngaI awe3 ul anens quauno'ag0gs :sandur uo2goD uD sumngoI (Ds)NOISIO(-XVWINIW uoIqoung wqo8e xewu!N
algorithm Minimax action an returns ) state ( Minimax-Decision function game in state current , state : inputs )) state , a( t Resul ( alue Min-V maximizing ) state ( ctions A in a the return value utility a returns ) state ( alue Max-V function ) state ( Utility return then ) state ( Terminal-Test if −∞ ←v )) s( alue Min-V , v( Max ←v do ) state ( Successors in s a, for v return value utility a returns ) state ( alue Min-V function ) state ( Utility return then ) state ( Terminal-Test if ∞ ←v )) s( alue Max-V , v( Min ←v do ) state ( Successors in s a, for v return 7 6 Chapter
8 9 de iieajdwo) xewruru jo serodoId
minimax of erties Prop ?? Complete 8 6 Chapter
69d iilewndO jaa alluyu!ue u!uana asixa ue KBenens alluy e gN (s!y oy seln oy!ads sey ssayp)auy s!Ajuo Liaajdwo xewruru jo serqodoId
minimax of erties Prop this). r fo rules ecific sp has (chess finite is tree if Only ?? Complete tree! infinite an in even exist can strategy finite a NB ?? Optimal 9 6 Chapter
OI 9 adeyD iKxajdwo awl iiasIMayO'quauoddo jewndo ue isulee 'sa iilewndO (siya joj sajnu oylpads sey ssayp)anluy s!aan j!'sa iianajdwo) xewrurw jo sangodod
minimax of erties Prop this) r fo rules ecific sp has (chess finite is tree if es, Y ?? Complete Otherwise?? onent. opp optimal an against es, Y ?? Optimal ?? y complexit Time 10 6 Chapter