了一篇“论浮体”的论文,提出了浮体定律,这是流体力 学的第一部著作。由于奴隶制、神权和宗教观念的束缚, 直到15世纪文艺复兴时期,尚未形成系统的理论。16世纪 以后,在欧洲由于封建制度的崩溃,资本主义开始萌芽, 生产力有了发展。在城市建设、航海和机械工业发展需要 的推动下,逐步形成近代的自然科学,流体力学也随之得 到发展。意大利的达芬奇nc,L.da)是文艺复兴时期 出类拔萃的美术家、科学家兼工程师,他倡导用实验方法 了解水流性态,并通过实验描绘和讨论了许多水力现象, 如自由射流、旋涡形成原理等等。1612年伽利略( Galilei) 提出了潜体的沉浮原理;1643年托里拆利( Torricelli,E, 给出了孔口泄流的公式;1650年帕斯卡( Pasca,B.)提 出液体中压力传递的定理;1686年牛顿( Newton,,)发 2021/220 14
2021/2/20 14 了一篇“论浮体”的论文,提出了浮体定律,这是流体力 学的第一部著作。由于奴隶制、神权和宗教观念的束缚, 直到15世纪文艺复兴时期,尚未形成系统的理论。16世纪 以后,在欧洲由于封建制度的崩溃,资本主义开始萌芽, 生产力有了发展。在城市建设、航海和机械工业发展需要 的推动下,逐步形成近代的自然科学,流体力学也随之得 到发展。意大利的达·芬奇(Vinci,L. da)是文艺复兴时期 出类拔萃的美术家、科学家兼工程师,他倡导用实验方法 了解水流性态,并通过实验描绘和讨论了许多水力现象, 如自由射流、旋涡形成原理等等。1612年伽利略(Galilei) 提出了潜体的沉浮原理;1643年托里拆利(Torricelli,E.) 给出了孔口泄流的公式;1650年帕斯卡(Pascal,B.)提 出液体中压力传递的定理;1686年牛顿(Newton,I.)发
表了名著《自然哲学的数学原理》对普通流体的黏性性状 作了描述,即现代表达为黏性切应力与速度梯度成正比一 牛顿内摩擦定律。为了纪念牛顿,将黏性切应力与速度梯 度成正比的流体称为牛顿流体。 18世纪~19世纪,流体力学得到了较大的发展,成为 独立的一门学科。古典流体力学的奠基人是瑞士数学家伯 努利( Bernoulli,D.)和他的亲密朋友欧拉(Euer,L)。 1738年,伯努利推导出了著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分方程,以后纳维( Navier,C L.-M-H.)和斯托克斯( Stokes,G.G.)建立了黏性流体运 动微分方程。拉格朗日( Lagrange)、拉普拉斯( Laplace) 和高斯( Gosse)等人,将欧拉和伯努利所开创的新兴的流 体动力学推向完美的分析高度。但当时由于理论的假设与 2021/220 15
2021/2/20 15 表了名著《自然哲学的数学原理》对普通流体的黏性性状 作了描述,即现代表达为黏性切应力与速度梯度成正比— 牛顿内摩擦定律。为了纪念牛顿,将黏性切应力与速度梯 度成正比的流体称为牛顿流体。 18世纪~19世纪,流体力学得到了较大的发展,成为 独立的一门学科。古典流体力学的奠基人是瑞士数学家伯 努利(Bernoulli,D.)和他的亲密朋友欧拉(Euler,L.)。 1738年,伯努利推导出了著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分方程,以后纳维(Navier,C .- L.-M.-H.)和斯托克斯(Stokes,G.G.)建立了黏性流体运 动微分方程。拉格朗日(Lagrange)、拉普拉斯(Laplace) 和高斯(Gosse)等人,将欧拉和伯努利所开创的新兴的流 体动力学推向完美的分析高度。但当时由于理论的假设与
实际不尽相符或数学上的求解困难,有很多疑难问题不能 不能从理论上给予解决。 19世纪末以来,现代工业迅猛发展,生产实践要求理 论与实际更加密切结合才能解决问题。1883年,雷诺 ( Reynolds,O)用不同直径的圆管进行实验,研究了黏性 流体的流动,提出了黏性流体存在层流和紊流两种流态, 并给出了流态的判别准则一雷诺数。12年后,他又引进紊 流(或雷诺)应力的概念,并用时均方法,建立了不可压 缩流体作紊流运动时所应满足的方程组,雷诺的研究为紊 流的理论研究奠定了基础。1891年,兰彻斯特(FW.)提 出速度环量产生升力的概念,这为建立升力理论创造了条 件,他也是第一个提出有限翼展机翼理论的人 进入20世纪以后,流体力学的理论与实验研究除了在 2021/220 16
2021/2/20 16 实际不尽相符或数学上的求解困难,有很多疑难问题不能 不能从理论上给予解决。 19世纪末以来,现代工业迅猛发展,生产实践要求理 论与实际更加密切结合才能解决问题。1883年,雷诺 (Reynolds,O.)用不同直径的圆管进行实验,研究了黏性 流体的流动,提出了黏性流体存在层流和紊流两种流态, 并给出了流态的判别准则—雷诺数。12年后,他又引进紊 流(或雷诺)应力的概念,并用时均方法,建立了不可压 缩流体作紊流运动时所应满足的方程组,雷诺的研究为紊 流的理论研究奠定了基础。1891年,兰彻斯特(F.W.)提 出速度环量产生升力的概念,这为建立升力理论创造了条 件,他也是第一个提出有限翼展机翼理论的人。 进入20世纪以后,流体力学的理论与实验研究除了在
已经开始的各个领域继续开展以外,在发展航空航天事业 方面取得了迅猛的发展。在运动物体的升力方面,库塔 (WM.)和儒可夫斯基(NE.)分别在1902年和1906年 独立地提岀特殊的与一般的库塔—儒可夫斯基定理和假定, 奠定了二维升力理论的基础。至于运动物体的阻力问题, 至此仍缺乏完善的理论,人们普遍认为:尾涡是物体阻力 的主要来源,遂将注意力转向物体尾流的研究。1912年, 卡门(Tvon)从理论上分析了涡系(即卡门涡街)的稳 定性。1904年普朗特( Prandtl,L)提出了划时代的边界层 理论,使黏性流体概念和无黏性流体概念协调起来,使流 体力学进入了一个新的历史阶段。 20世纪中叶以后,流体力学的研究内容,有了明显的 转变,除了一些较难较复杂的问题,如紊流、流动稳定性 2021/220 17
2021/2/20 17 已经开始的各个领域继续开展以外,在发展航空航天事业 方面取得了迅猛的发展。在运动物体的升力方面,库塔 (W.M.)和儒可夫斯基(N.E.)分别在1902年和1906年 独立地提出特殊的与一般的库塔—儒可夫斯基定理和假定, 奠定了二维升力理论的基础。至于运动物体的阻力问题, 至此仍缺乏完善的理论,人们普遍认为:尾涡是物体阻力 的主要来源,遂将注意力转向物体尾流的研究。1912年, 卡门(T.von)从理论上分析了涡系(即卡门涡街)的稳 定性。1904年普朗特(Prandtl,L.)提出了划时代的边界层 理论,使黏性流体概念和无黏性流体概念协调起来,使流 体力学进入了一个新的历史阶段。 20世纪中叶以后,流体力学的研究内容,有了明显的 转变,除了一些较难较复杂的问题,如紊流、流动稳定性
与过渡、涡流动力学和非定常流等继续研究外,更主要的 是转向研究石油、化工、能源、环保等领域的流体力学问 题,并与相关的邻近学科相互渗透,形成许多新分支或交 叉学科,如计算流体力学、实验流体力学、可压缩气体力 学、磁流体力学、非牛顿流体力学、生物流体力学、多相 流体力学、物理-化学流体力学、渗流力学和流体机械流 体力学等。一般来说,这些新的分支或交叉学科所研究的 现象或问题都比较复杂,要想很好地解决它们,实际上是 对流体力学研究人员的一次大挑战。现有的流体力学运动 方程组不能完全准确地描述这些现象和新问题,试图用现 有的方程组和纯计算的方法去解决这些问题是相当困难的, 唯一可行的道路是采用纯实验或实验与计算相结合的方法 近年来在一些分支或交叉学科(如多相流等)中采 2021/220 18
2021/2/20 18 与过渡、涡流动力学和非定常流等继续研究外,更主要的 是转向研究石油、化工、能源、环保等领域的流体力学问 题,并与相关的邻近学科相互渗透,形成许多新分支或交 叉学科,如计算流体力学、实验流体力学、可压缩气体力 学、磁流体力学、非牛顿流体力学、生物流体力学、多相 流体力学、物理-化学流体力学、渗流力学和流体机械流 体力学等。一般来说,这些新的分支或交叉学科所研究的 现象或问题都比较复杂,要想很好地解决它们,实际上是 对流体力学研究人员的一次大挑战。现有的流体力学运动 方程组不能完全准确地描述这些现象和新问题,试图用现 有的方程组和纯计算的方法去解决这些问题是相当困难的, 唯一可行的道路是采用纯实验或实验与计算相结合的方法。 近年来在一些分支或交叉学科(如多相流等)中采