Axioms for a probability space 满足下列性质的P称为一个probability distribution或者一个 probability measure. 1.P(A)≥0 for any A C S. 2.P(S)=1. 3.P(AU B)=P(A)+P(B)for any two disjoint events A and B. 记住:P是一个函数。 问题4: 为什台任何事件的概率值不会大于1? 如果A和B相交,P(AUB)是什么?
Axioms for a probability space 满足下列性质的P 称为一个probability distribution 或者一个 probability measure。 记住:P 是一个函数
间题5: 有限样本空间中的离散 概率与计数有什么关系? P(E)=∑Px). x:x∈E
有限样本空间 There are only finite outcomes. Each outcome individually consists an elementary event. For one coin toss,there are two outcomes-head and tail "Head"is an elementary event. The probability of an elementary event corresponds a specific outcome. ■ If all outcomes are equally likely,then the probability of an event E can be computed as: p(E)= E totalnumberof outcomesin E total number of outcomes
有限样本空间 There are only finite outcomes. Each outcome individually consists an elementary event. For one coin toss, there are two outcomes – head and tail. “Head” is an elementary event. The probability of an elementary event corresponds a specific outcome. If all outcomes are equally likely, then the probability of an event E can be computed as: totalnumber of outcomes totalnumber of outcomesin | | | | ( ) E A E p E
问题6: 你能举一个不满足equally lkey分布的例子吗? 这种情况下,概率公式应该 如何确定?
交集非空的事件 掷均匀的色子,掷3次。出现事件“或者3次均相等,或者 没有一次是4”的概率是多少? 合理假设:每个outcome出现的可能性是一样的 ■样本空间大小是63=216。 This is a special case of so-called inclusion- 用F表示事件“3次结果一样” exclusion principle 用G表示事件“没有一次结果是4 从集合{1,2,3,5,6}中任选3个数(可重复)的方案数) 要求的事件为F和G的并集: IFUG=lF+|G-FnG=6+125-5=126 因此,最终结果是:126/216=7/12
交集非空的事件 掷均匀的色子,掷3次。出现事件“或者3次均相等,或者 没有一次是4”的概率是多少? 合理假设:每个outcome出现的可能性是一样的。 样本空间大小是 6 3=216。 用F表示事件“3次结果一样”,则|F|=6 (F={111,222,…,666}) 用G表示事件“没有一次结果是4”,则|G|=53=125 (G是 从集合{1,2,3,5,6}中任选3个数(可重复)的方案数) 要求的事件为F和G的并集: |FG|=|F|+|G| 因此,最终结果是:126/216 = 7/12 This is a special case of so-called inclusionexclusion principle -|FG|=6+125-5=126