Reference input -II 16. 3117-23 On page 17-5, compensator implemented with a reference command y changing to feedback on e(t=r(t-y(t) rather than -y(t)
文件格式: PDF大小: 65.55KB页数: 7
Weighting Matrix Selection a good rule of thumb when selecting the weighting matrices Rxx (or Ru and R uu is to normalize
文件格式: PDF大小: 39.57KB页数: 1
Deterministic lOR Optimal control and the riccati equation · Lagrange multipliers The Hamiltonian matrix and the symmetric root locus Factoids: for symmtric R
文件格式: PDF大小: 421.11KB页数: 14
Bounded gain There exist very easy ways of testing(analytically) whether S Gu)< SISO Bounded Gain Theorem: Gain of generic stable system
文件格式: PDF大小: 72.74KB页数: 8
Model Uncertain Prior analysis assumed a perfect model. What if the model is in correct= actual system dynamics GA(s)are in one of the sets Multiplicative model G,(s=GN(s(1+E(s)) Additive model Gp(S)=GN(S)+E(s) where
文件格式: PDF大小: 323.98KB页数: 12
MIMO Systems Singular Value Decomposition Multivariable Frequency Response Plots Copyright 2001 by Jonathan How
文件格式: PDF大小: 297.04KB页数: 15
tate-Space Systems Closed-loop control using estimators and regulators Dynamics output feedback “ Back to reality' Copyright[2001by JOnathan dHow
文件格式: PDF大小: 274.83KB页数: 23
Closed-loop system analysis Robustness State-space -eigenvalue analysis Frequency domain- Nyquist theorem Sensitivity Copyright 2001 by Jonathan How
文件格式: PDF大小: 317.62KB页数: 17
State-Space Systems e Ful-state feedback Control How do we change the poles of the state-space system? Or, even if we can change the pole locations Where do we change the pole locations to? How well does this approach work?
文件格式: PDF大小: 876.84KB页数: 16
State-Space Systems Open-loop Estimators Closed-loop Estimators Observer Theory (no noise)-Luenberger IEEE TAC Vol 16, No. 6, pp. 596-602, December 1971 Estimation Theory(with noise)-Kalman Copyright [2001 by JOnathan dHow
文件格式: PDF大小: 1.77MB页数: 17