State-Space Systems Open-loop Estimators Closed-loop Estimators Observer Theory (no noise)-Luenberger IEEE TAC Vol 16, No. 6, pp. 596-602, December 1971 Estimation Theory(with noise)-Kalman Copyright [2001 by JOnathan dHow
文件格式: PDF大小: 1.77MB页数: 17
Interpretations With noise in the system, the model is of the form =AC+ Bu+ Buw, y= Ca +U And the estimator is of the form =Ai+ Bu+L(y-9,y=Ci e Analysis: in this case: C-I=[AT+ Bu+Buw-[Ac+ Bu+L(y-gI A(-)-L(CI-Ca)+B
文件格式: PDF大小: 337.12KB页数: 5
Full-state Feedback Control How do we change the poles of the state-space system? Or, even if we can change the pole locations Where do we put the poles? Linear Quadratic Regulator Symmetric Root Locus How well does this approach work? Copyright [2001 by JOnathan dHow
文件格式: PDF大小: 455.46KB页数: 16
State-Space Systems e Ful-state feedback Control How do we change the poles of the state-space system? Or, even if we can change the pole locations Where do we change the pole locations to? How well does this approach work?
文件格式: PDF大小: 460.92KB页数: 8
This is a bit strange, because previously our figure of merit when comparing one state-space model to another(page 8-8)was whether they reproduced the same same transfer function Now we have two very different models that result in the same transfer function
文件格式: PDF大小: 108.57KB页数: 10
State-Space Systems What are the basic properties of a state-space model, and how do we analyze these? e Time Domain Interpretations System Modes Copyright 2001 by Jonathan How
文件格式: PDF大小: 101.09KB页数: 12
Controllability Definition: An LTI system is controllable if, for every a*(t d every T>0, there exists an input function u(t),0
文件格式: PDF大小: 211.52KB页数: 13
In going from the state space model i(t)=A.(t)+ Bu(t y(t)= Ca(t)+ Du(t) to the transfer function G(s)=C(sI -A)-B+D need to form the inverse of the matrix(sI- A)-a symbolic inverse- not easy at all For simple cases, we can use the following
文件格式: PDF大小: 80.2KB页数: 4
Topic 8 16.31 Feedback Control State-Space Systems What are state-space models? Why should we use them? How are they related to the transfer functions used in classical control design and how do we develop a state- space model?
文件格式: PDF大小: 79.66KB页数: 9
16.31 Feedback Control State-Space Systems What are state-space models? Why should we use them? and how do we develop a state-space mode( &ased in classical control design How are they related to the transfer functions What are the basic properties of a state-space model, and how do we analyze these?
文件格式: PDF大小: 225.46KB页数: 17
北京大学:《太空探索》精品课程教学资源(PPT课件)第二篇 探索太空 第六章 太空飞行基础美国麻省理工大学:《航空航天产业 The Aerospace Industry》课程教学资源(讲义,英文版)Journals in this seminar《数字导航技术》课程教学资源(书籍文献)Optimally Robust Kalman Filtering《数字导航技术》课程教学资源(书籍文献)Navigation Sensors and Systems《直升机发展历史》讲义《数字导航技术》课程教学资源(书籍文献)惯性导航初始对准电子科技大学:航空航天类课程教学资源(课件讲稿)飞机机体结构《飞行器系统工程》(英文版) LECTURE OUTLINE麻省理工学院:《偏微分方程式数字方法》(英文版)Lecture 15 Discretization of the Poisson麻省理工学院:《Satellite Engineering》Lecture 14 Structures in Space Systems《数字导航技术》课程教学资源(书籍文献)GPS原理与接收机设计(谢钢)










