都是收敛的,于是矩阵级数 绝对收敛。 反之,若矩阵级数 41 绝对收敛,则对每一对i,方都有
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
a,=la,+a,+…+a,+ k-0 <0 于是 211芝2叭-22, :1 11 即4收敛。根据矩阵范数等价性定理知结 论对任何一种范数都正确
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
关于矩阵级数运算有下面的性质: 设至m九 宫-8 ,则 () aA+BB)=aA+BB,a,peC k=0 ②如果立40 收敛(绝对收敛),则 立Q=空0收致(绝对收敛)。 =0 3)若】 立g均绝对收文。则 k=0 4xB=AB(绝对收敛) 0 This docu at is produced by trial ver f Print2Flash.Visit www.print2flash.com for m
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
定义设A=(a)∈Cm”,称形如 erAt=en1teAtted 的矩阵级数为矩阵幂级数。 定理3.6设幂级数 三c,的收敛半径为八A 为n阶方阵。若p(A)<r,则矩阵幂级数 之c4绝对收敛:若p(0>r,则三4 发散。 by tria
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information
证明设A的Jordan标准形为 J=diag(J1(),J2(22),…,J,(,) 其中 21 J,(2)= (i=1,2,…,r) 于是 Mi d,xd A=Pdiag(J(),J(2),…,J(2)P1 This doc is pro duced by trial ver w.print2flash.com
This document is produced by trial version of Print2Flash. Visit www.print2flash.com for more information