注意:X1的取值范围不能超出X的给定范围,否则, 会给出“NaN”错误。 例6.7给出概率积分的数据表如表6.1所示,用不同的插值 方法计算f(0.472)。 例6.8某检测参数随时间t的采样结果如表5.1,用数据插 值法计算=2,7,12,17,22,17,32,37,42,47,52, 57时的f值
注意:X1的取值范围不能超出X的给定范围,否则, 会给出“NaN”错误。 例6.7 给出概率积分的数据表如表6.1所示,用不同的插值 方法计算f(0.472)。 例6.8 某检测参数f随时间t的采样结果如表5.1,用数据插 值法计算t=2,7,12,17,22,17,32,37,42,47,52, 57时的f值
2。二维数据插值 在MATLAB中,提供了解决二维插值问题的函数 interp2,其调用格式为: Z1=interp2(X,Y,Z,X1,Y1,'method') 其中X,Y是两个向量,分别描述两个参数的采样点, Z是与参数采样点对应的函数值,,X1,Y1是两个向 量或标量,描述欲插值的点。Z1是根据相应的插 值方法得到的插值结果。method的取值与一维插 值函数相同。X,Y,Z也可以是矩阵形式。 同样,X1,Y1的取值范围不能超出X,Y的给定范围, 否则,会给出“NaN”错误
2. 二维数据插值 在MATLAB中,提供了解决二维插值问题的函数 interp2,其调用格式为: Z1=interp2(X,Y,Z,X1,Y1,'method') 其中X,Y是两个向量,分别描述两个参数的采样点, Z是与参数采样点对应的函数值,X1,Y1是两个向 量或标量,描述欲插值的点。Z1是根据相应的插 值方法得到的插值结果。 method的取值与一维插 值函数相同。X,Y,Z也可以是矩阵形式。 同样,X1,Y1的取值范围不能超出X,Y的给定范围, 否则,会给出“NaN”错误
例6.9设z=x2+y2,对z函数在0,1]X0,2]区域内进行 插值。 例6.10某实验对一根长10米的钢轨进行热源的温度 传播测试。用x表示测量点0:2.5:10(米),用h表示 测量时间0:30:60(秒),用T表示测试所得各点的温 度(℃)。试用线性插值求出在一分钟内每隔10秒、 钢轨每隔0.5米处的温度
例6.9 设z=x2+y2,对z函数在[0,1]×[0,2]区域内进行 插值。 例6.10 某实验对一根长10米的钢轨进行热源的温度 传播测试。用x表示测量点0:2.5:10(米),用h表示 测量时间0:30:60(秒),用T表示测试所得各点的温 度(℃)。试用线性插值求出在一分钟内每隔10秒、 钢轨每隔0.5米处的温度
6.1.3曲线拟合 在MATLAB中,用polyfit函数来求得最小二乘拟合多项式的 系数,再用pova函数按所得的多项式计算所给出的点上 的函数近似值。 polyfit函数的调用格式为: [P,S]=polyfit(X,Y,m) 函数根据采样点X和采样点函数值Y,产生一个m次多项式P 及其在采样点的误差向量S。其中X,Y是两个等长的向量, P是一个长度为m+1的向量,P的元素为多项式系数。 polyval函数的功能是按多项式的系数计算x点多项式的值
6.1.3 曲线拟合 在MATLAB中,用polyfit函数来求得最小二乘拟合多项式的 系数,再用polyval函数按所得的多项式计算所给出的点上 的函数近似值。 polyfit函数的调用格式为: [P,S]=polyfit(X,Y,m) 函数根据采样点X和采样点函数值Y,产生一个m次多项式P 及其在采样点的误差向量S。其中X,Y是两个等长的向量, P是一个长度为m+1的向量,P的元素为多项式系数。 polyval函数的功能是按多项式的系数计算x点多项式的值
例6.11用一个3次多项式在区间0,2π内逼近函数。 命令如下: X=linspace(0,2*pi,50); Y=sin(X); P=polyfit(X,Y,3) %得到3次多项式的系数和误差
例6.11 用一个3次多项式在区间[0,2π]内逼近函数。 命令如下: X=linspace(0,2*pi,50); Y=sin(X); P=polyfit(X,Y,3) %得到3次多项式的系数和误差