Z-plane Unit circle xIn==a ul-n x(z) for z<a 19e X(z) r|2>a 2021/2/6 Zhongguo Liu_ Biomedical Engineering_shandong Univ
23 2021/2/6 Zhongguo Liu_Biomedical Engineering_Shandong Univ. ( ) z X z z a = − for z a xn= −a u− n −1 n for z a xn a un n = ( ) z X z z a = −
EX, 3.3 Sum of two exponential sequences Determine the z-transform, including the roc pole-zero-plot, for sequence XIn 小+- Solution n x(2)=∑巛uln n|+ uln>z n=(2/un|2”+ ∑(-= n=-00 n ∑ n=0 n=0 2021/2/6 Zhongguo Liu_ Biomedical Engineering_shandong Univ
24 2021/2/6 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Ex. 3.3 Sum of two exponential sequences 1 1 2 3 n n x n u n u n = + − ( ) 1 1 2 3 n n n n X z u n u n z − =− = + − 0 0 1 1 1 1 2 3 n n n n z z − = − = = + − 1 1 2 3 n n n n n n u n z u n z − − =− =− = + − ◆Determine the z-transform, including the ROC, pole-zero-plot, for sequence: Solution:
Example 3.3: Sum of two exponential sequences X(z)=∑ n=0 2z z 12 1+-z t-Z 2 ROC: z> and z>3=ROC: 2> 25 2021/2/6 Zhongguo Liu_ Biomedical Engineering_shandong Univ
25 2021/2/6 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Example 3.3: Sum of two exponential sequences 1 1 2 3 1 2 z and R z OC : z ( ) 1 0 0 1 1 1 2 3 n n n n X z z z − = − = = + − 1 1 1 2 12 1 1 1 1 2 3 z z z z − − − = − + 1 1 1 1 1 1 1 1 2 3 z z − − = + − + ROC:
手 m z-plane n z-plane 2 e ORe 1+-z 2z 12 +-Z Re 2 n xIn un+ 2 Zhongguo Liu_ Biomedical Engineering_shandong Univ
26 2021/2/6 Zhongguo Liu_Biomedical Engineering_Shandong Univ. 1 1 1 1 2 z − − 1 1 1 1 3 z − + 1 1 1 2 12 1 1 1 1 2 3 z z z z − − − − + 1 1 2 3 n n x n u n u n = + −
Example 3.4: Sum of two exponential x[n 2 Solution X(2)= az 2 2 or z> +-z ROC. 小+(-小 2 2 +-z vi99w-MMi vn. g UniV
27 2021/2/6 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Example 3.4: Sum of two exponential 2 1 2 1 1 1 2 1 1 − − , z z u n Z n 3 1 3 1 1 1 3 1 1 + − − , z z u n Z n 2 1 3 1 1 1 2 1 1 1 3 1 2 1 1 1 + + − + − − − , z z z u n u n Z n n 1 1 2 3 n n x n u n u n = + − xn a un n = ( ) 1 1 1 X z az − = − for z a Solution: ROC: