气流 §11-3圆断面射流的运动分析 现在根据紊流射流特征来研究圆断面射流的速度υ,流量 Q沿射程s(或x)的变化规律。 轴心速度 应用式(11-1-4) P 2 丌D vdy 0 以πDR2U2除两端,得: )2(o d( RU Jo DRR 应用式(111-3)[-()}3]代入,则 R 1-n13)2n]dn=B2 26
26 §11-3 圆断面射流的运动分析 现在根据紊流射流特征来研究圆断面射流的速度 ,流量 Q 沿射程 s (或 x )的变化规律。 一、轴心速度 m 2 1 0 1.5 2 2 1.5 2 1 0 0 2 0 2 2 2 2 0 2 2 0 2 0 [(1 ) ] d 11 1 3 [1 ( ) ] ( ) 2 ( ) ( ) 2 11 1 4 B R y R y d R y R r R r ydy m m m m R − = − = = 应用式( — — ) = 代入,则 ( ) 以 除两端,得: 应用式( — — )
Gas arrosion According to above variety spectrum of n and ,Ⅴaue ble of B2 listed in tablell—2。 R value of b and c table 11-2 1.5 2 2.5 B 009850.06400464 0035900286 0.3845030502585022602015 B dn 0 -)7dn 0 then(a)2()2=2B2=2×0.0464 R D 328 R 27
27 According to above variety spectrum of and ,value table of B2 listed in table11—2。 R y m n Ba Ca 1 1.5 2 2.5 3 0.0985 0.3845 0.064 0.3065 0.0464 0.2585 0.0359 0.2256 0.0286 0.2015 value of and B C a a table 11—2 1 1 0 0 0 0 2 2 2 0 0 ( ) ( ) then ( ) 2 2 0.0464 3.28 n n n n m m m m B d C d r B R r R = = = = = ( )
气流 按前述及。的变化范围,B2的数值列于表11-2。 CRU B和C,值 表11-2 l 1.5 2 2.5 B 0085004046403590086 C 03845036502359022602015 n B,=( dr 于是(0)2(0)2=2B2=2×0.0464 R =3.28 R 28
28 按前述 及 的变化范围,B2 的数值列于表11—2。 R y m n Ba Ca 1 1.5 2 2.5 3 0.0985 0.3845 0.064 0.3065 0.0464 0.2585 0.0359 0.2256 0.0286 0.2015 Ba和Ca 值 表 11—2 R r B R r B d C d m m n m n n m n 0 0 2 0 2 0 2 1 0 1 0 3.28 ( ) 2 2 0.0464 ( ) ( ) = = = = = 于是( )
Gas arrosion substituting variety rule of diffusion radii along diffusion way(11-12)into, obtain 0.965 0.48 (11-2-1) as as -+0.294 -+0.147 2. Throughput Q of section O 2r ydy R ()()d( 2o I 0 070f0 substituting yyR into ro R ro R U =2 )() 0 RR 29
29 0 0 0 substituting variety rule of diffusion radii along diffusion way 11 1 2 int 0.965 0.48 (11 2 1) 0.294 0.147 m o obtain as as r d = = + + ( — — ) , — — 2. Throughput Q of section 0 2 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 2 ( )( ) ( ) substituting ; into 2 ( ) ( )( ) ( ) s R R r m m m m Q y y ydy d Q r r r y y R r R r Q R y y d Q r R R = = = = =
气 再将射流半径R沿程变化规律(11-1-2)式代入,得 0.965 0.48 U as as (11-2-1) +0.294 +0.147 、断面流量Q 取无因次流量, R o2 t Ydy c,D、y =2()d() 070 再用2bU R 代换 DO U。Rr OUR、 =2- )()(2)d( door RR 30
30 (11 2 1) 0.147 0.48 0.294 0.965 11 1 2 0 0 0 — — 再将射流半径 沿程变化规律( — — )式代入,得 + = + = d as r as R m 二、断面流量 Q 取无因次流量, 2 ( ) ( )( ) ( ) ; 2 ( )( ) ( ) 2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 R y d R y r R Q Q r R R y r y r y d r y r ydy Q Q m m m m r R R s = = = = 再用 = 代换