Multicolor if n=R(k,D,for any 2-coloring of Kn, there exists a red Ki or a blue Ki. R(;k1,k2,…,k) ifn≥R(r;k1,k2,…,k), for any r-coloring of Kn,there exists a monochromatic ki-clique with color i for some ie1,2,...r}. Ramsey Theorem R(r;k1,k2,...,k)is finite
R(r; k1, k2, ... , kr) Multicolor if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. if n ≥ R(r; k1, k2, ... , kr), for any r-coloring of Kn, there exists a monochromatic ki-clique with color i for some i∈{1, 2, ..., r}. Ramsey Theorem R(r; k1, k2, ... , kr) is finite
ifn≥R(r;k1,k2,.,k), for any r-coloring of K,there exists a monochromatic ki-clique with color i for some ie1,2,...rh. r-coloring:(☒)-L,2rl
if n ≥ R(r; k1, k2, ... , kr), for any r-coloring of Kn, there exists a monochromatic ki-clique with color i for some i∈{1, 2, ..., r}. Kn = [n] 2 ⇥ r-coloring f : [n] ⇥ {1, 2,...,r} 2
Hypergraph if n=Rd(r;ki,k2,...kr), for anyroring of(),there exists a monochromatic (with color i and ISl=ki for some ie1,2,...r. completeom r.coloring
complete t-uniform hypergraph [n] t ⇥ t Hypergraph r-coloring f : [n] ⇥ {1, 2,...,r} if n ≥ Rt(r; k1, k2, ... , kr), for any r-coloring of , there exists a monochromatic with color i and |S|=ki for some i∈{1, 2, ..., r}. [n] t ⇥ S t ⇥