(3)出示下面几种解答方案,让学生判断哪个是正确的 1V=Sh 50×2.1=105(立方厘米) 答:它的体积是105立方厘米 ②2.1米=210厘米 V=Sh 50×210=10500(立方厘米) 答:它的体积是10500立方厘米。 ③50平方厘米=0.5平方米 V=Sh 0.5×2.1=1.05(立方米) 答:它的体积是1.05立方米。 ④50平方厘米=0.005平方米 V=Sh 0.005×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。 先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要 说说错在什么地方 (4)做第20页的“做一做” 学生独立做在练习本上,做完后集体订正 3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=rrh) 4、教学例6 (1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积) (2)学生尝试完成例6。 ①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2) ②杯子的容积:50.24×10=502.4(cm3)=502.4(m1) 比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同 的是补充例题已给出底面积,可直接应用公式计算:例6只知道底面直径,要先求底面积,再求体积.) 三、巩固练习 1、做第21页练习三的第1题 2、练习三的第2题
36 (3)出示下面几种解答方案,让学生判断哪个是正确的. ①V=Sh 50×2.1=105(立方厘米) 答:它的体积是 105 立方厘米。 ②2.1 米=210 厘米 V=Sh 50×210=10500(立方厘米) 答:它的体积是 10500 立方厘米。 ③50 平方厘米=0.5 平方米 V=Sh 0.5×2.1=1.05(立方米) 答:它的体积是 1.05 立方米。 ④50 平方厘米=0.005 平方米 V=Sh 0.005×2.1=0.0105(立方米) 答:它的体积是 0.0105 立方米。 先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要 说说错在什么地方. (4)做第 20 页的“做一做”。 学生独立做在练习本上,做完后集体订正. 3、引导思考:如果已知圆柱底面半径 r 和高 h,圆柱体积的计算公式是怎样的?(V=πr 2 h) 4、教学例 6 (1)出示例 5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积) (2)学生尝试完成例 6。 ① 杯子的底面积:3.14×(8÷2) 2=3.14×4 2=3.14×16=50.24(cm 2) ② 杯子的容积:50.24×10=502.4(cm 3)=502.4(ml) 5、比较一下补充例题、例 6 有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同 的是补充例题已给出底面积,可直接应用公式计算;例 6 只知道底面直径,要先求底面积,再求体积.) 三、巩固练习 1、做第 21 页练习三的第 1 题. 2、练习三的第 2 题.
这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求 圆柱的体积 四、布置作业 练习三第3、4题 板书: 圆柱的体积三底面积×高V=$h或V=mrh 例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2) 杯子的容积:50.24×10=502.4(cm3)=502.4(m1) 圆柱的体积练习课 教学目标 1、使学生能够运用公式正确地计算圆柱的体积和容积。 2、初步学会用转化的数学思想和方法,解决实际问题的能力 4、渗透转化思想,培养学生的自主探索意识 教学重点:掌握圆柱体积的计算公式 教学难点:灵活应用圆柱的体积公式解决实际问题。 教学过程: 复习 1、复习圆柱体积的推导过程 长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。 长方体的体积=底面积×高,所以圆柱的体积≡底面积Ⅹ高,即V=Sh 2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演 解决实际问题 1、练习三第7题。 学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。 2、练习三第5题 (1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答 (2)学生选择喜爱的方法解答这道题目 3、练习三第8题
37 这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求 圆柱的体积。 四、布置作业 练习三第 3、4 题。 板书: 圆柱的体积=底面积×高 V=Sh 或 V=πr 2 h 例 6:① 杯子的底面积:3.14×(8÷2)2=3.14×4 2=3.14×16=50.24(cm 2) ② 杯子的容积:50.24×10=502.4(cm 3)=502.4(ml) 圆柱的体积练习课 教学目标: 1、使学生能够运用公式正确地计算圆柱的体积和容积。 2、初步学会用转化的数学思想和方法,解决实际问题的能力 4、 渗透转化思想,培养学生的自主探索意识。 教学重点:掌握圆柱体积的计算公式。 教学难点:灵活应用圆柱的体积公式解决实际问题。 教学过程: 一、 复习 1、复习圆柱体积的推导过程 长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。 长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即 V=Sh。 2、复习长方体的体积公式后,让学生独立完成练习三第 6 题,并指名板演。 二、解决实际问题 1、练习三第 7 题。 学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。 2、练习三第 5 题。 (1)指导学生变换公式:因为 V=Sh,所以 h=V÷S。也可以列方程解答。 (2)学生选择喜爱的方法解答这道题目。 3、练习三第 8 题
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底 面直径为2米,高为0.25米的圆柱。 (2)在充分理解题意后学生独立完成,集体订正 练习三第9、10题 (1)学生独立审题,完成9、10两题。 (2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯 的容积,用公式V=Sh) (3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个 底面积再求出另一个圆柱的体积。 三、布置作业 完成“一课三练”的相关练习 2、圆锥 (1)圆锥的认识 教学内容:教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。 教学目标 1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制 作圆锥。 2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。 3、培养学生的自主探索意识,激发学生强烈的求知欲望。 教学重点:掌握圆锥的特征 教学难点:正确理解圆锥的组成 教学过程 复习 1、圆柱体积的计算公式是什么? 2、圆柱的特征是什么? 新课
38 (1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底 面直径为 2 米,高为 0.25 米的圆柱。 (2)在充分理解题意后学生独立完成,集体订正。 4、练习三第 9、10 题 (1)学生独立审题,完成 9、10 两题。 (2)评讲第 9 题:要怎样才能判断出 800ml 的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯 的容积,用公式 V=Sh) (3)指名说说解答第 10 题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个 底面积再求出另一个圆柱的体积。 三、布置作业 完成“一课三练”的相关练习。 2、圆锥 (1)圆锥的认识 教学内容:教科书 P23-26 的内容,P24“做一做”,完成练习四的第 1、2 题。 教学目标: 1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制 作圆锥。 2、 通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。 3、 培养学生的自主探索意识,激发学生强烈的求知欲望。 教学重点:掌握圆锥的特征。 教学难点:正确理解圆锥的组成。 教学过程: 一、复习 1、圆柱体积的计算公式是什么? 2、圆柱的特征是什么? 二、新课
1、圆锥的认识 (1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一 个顶点和一个面是圆的,等等。 (2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心0) (3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面) (4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥 只有一个顶点,所以圆锥只有一条高) 2、小结 圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲 面,有一个顶点和一条高 3、测量圆锥的高 由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。 (1)先把圆锥的底面放平 (2)用一块平板水平地放在圆锥的顶点上面 (3)竖直地量出平板和底面之间的距离 4、教学圆锥侧面的展开图 (1)学生猜想圆锥的侧面展开后会是什么图形呢? (2)实验来得出圆锥的侧面展开后是一个扇形。 5、虚拟的圆锥 (1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么 形状? (2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。 三、课堂练习 1、做第24页“做一做”的题目 让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困 难的学生及时辅导 2、练习四的第1题 (1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出 (2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的 3.完成练习四的第2题。 四、总结
39 1、圆锥的认识 (1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一 个顶点和一个面是圆的,等等。 (2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心 O) (3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面) (4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥 只有一个顶点,所以圆锥只有一条高) 2、小结 圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲 面,有一个顶点和一条高. 3、测量圆锥的高 由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。 (1)先把圆锥的底面放平; (2)用一块平板水平地放在圆锥的顶点上面; (3)竖直地量出平板和底面之间的距离。 4、教学圆锥侧面的展开图 (1)学生猜想圆锥的侧面展开后会是什么图形呢? (2)实验来得出圆锥的侧面展开后是一个扇形。 5、虚拟的圆锥 (1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么 形状? (2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。 三、课堂练习 1、做第 24 页“做一做”的题目。 让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困 难的学生及时辅导。 2、练习四的第 1 题。 (1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。 (2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。 3.完成练习四的第 2 题。 四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗? (2)圆锥的体积 教学内容:第25~26页,例2、例3及练习四的第3~8题。 教学目的: 1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运 用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。 2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。 3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。 教学重点:掌握圆锥体积的计算公式。 教学难点:正确探索出圆锥体积和圆柱体积之间的关系 教学过程 复习 1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点) 圆柱体积的计算公式是什么? 指名学生回答,并板书公式:“圆柱的体积=底面积×高”。 、新课 1、教学圆锥体积的计算公式。 (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的 (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥 体积的公式) (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验 看看它们之间的体积有什么关系?” (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满? (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。) (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的) 板书:圆锥的体积=×圆柱的体积=×底面积×高,字母公式:V=Sh
40 关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗? (2)圆锥的体积 教学内容:第 25~26 页,例 2、例 3 及练习四的第 3~8 题。 教学目的: 1、 通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运 用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。 2、 借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。 3、 通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。 教学重点:掌握圆锥体积的计算公式。 教学难点:正确探索出圆锥体积和圆柱体积之间的关系。 教学过程: 一、复习 1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点) 2、圆柱体积的计算公式是什么? 指名学生回答,并板书公式:“圆柱的体积=底面积×高”。 二、新课 1、教学圆锥体积的计算公式。 (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的. (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥 体积的公式) (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验, 看看它们之间的体积有什么关系?” (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满? (教师让学生注意,记录几次,使学生清楚地看到倒 3 次正好把圆柱装满。) (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 3 1 ) 板书:圆锥的体积= 3 1 ×圆柱的体积= 3 1 ×底面积×高,字母公式:V= 3 1 Sh