第四章经典单方程计量经济学 模型:放宽基本假定的模型
第四章 经典单方程计量经济学 模型:放宽基本假定的模型
基本假定违背:不满足基本假定的情况。主要包括 (1)随机误差项序列存在异方差性; (2)随机误差项序列存在序列相关性; (3)解释变量之间存在多重共线性; (4)解释变量是随机变量且与随机误差项相关 (随机解释变量); 此外: (5)模型设定有偏误 (6)解释变量的方差不随样本容量的增而收敛 计量经济检验:对模型基本假定的检验 本章主要学习:前4类
基本假定违背:不满足基本假定的情况。主要 包括: (1)随机误差项序列存在异方差性; (2)随机误差项序列存在序列相关性; (3)解释变量之间存在多重共线性; (4)解释变量是随机变量且与随机误差项相关 (随机解释变量); 此外: (5)模型设定有偏误 (6)解释变量的方差不随样本容量的增而收敛 计量经济检验:对模型基本假定的检验 本章主要学习:前4类
§41异方差性 异方差的概念 二、异方差的类型 实际经济问题中的异方差性 四、异方差性的后果 五、异方差性的检验 六、异方差的修正 七、案例
§4.1 异方差性 一、异方差的概念 二、异方差的类型 三、实际经济问题中的异方差性 四、异方差性的后果 五、异方差性的检验 六、异方差的修正 七、案例
异方差的概念 对于模型 Y=Bo+BX+B2X2it.+BkXk+u 如果出现 2 arou 即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为出现了异方差性 (Heteroskedasticity)
对于模型 Yi = 0 + 1 Xi i + 2 X2i ++ k Xki + i 如果出现 Var i i ( ) = 2 即对于不同的样本点,随机误差项的方差不再 是常数,而互不相同,则认为出现了异方差性 (Heteroskedasticity)。 一、异方差的概念
二、异方差的类型 同方差性假定:σ2=常数≠f(X 异方差时:2=f(X) 异方差一般可归结为三种类型: (1)单调递增型:σ2随X的增大而增大 (2)单调递减型:σ2随Ⅹ的增大而减小 (3)复杂型:2与X的变化呈复杂形式
二、异方差的类型 同方差性假定:i 2 = 常数 f(Xi ) 异方差时: i 2 = f(Xi ) 异方差一般可归结为三种类型: (1)单调递增型: i 2随X的增大而增大 (2)单调递减型: i 2随X的增大而减小 (3)复 杂 型: i 2与X的变化呈复杂形式