3. 1.2 Phase Equilibria and Metastability 3. 1.2.2 Non-Stoichiometry 83 3.1.3 Microstructure 84 ving 3. 2. Some Other Precursors 3.2.1 Old-Fashioned Metallurgy and Physical Metallurgy 98 3.2.2.1 Nucleation and Spinodal dec 3.2.3 Crystal Defects 3.2.3.1 Point Defects 10 3.2.3.2 Line Defects: Dislocations 110 3.2.3.3 Crystal Growth 3.2.3.4 Polytypism 119 3.2.3.5 Crystal Structure, Crystal Defects and Chemical Reactions 121 3.2.4 Crystal Chemistry and Physics 3.2.5 Physical Mineralogy and Geophysics 3.3. Early Role of Solid-State Physics 3.3. 1 Quantum Theory and Electronic Theory of Solids 3. 1. 1 Understanding Alloys in Terms of Electron Theory 134 3.3.2 Statistical mechanics 138 3.3.3 Magnetism CHAPTER 4 THE VIRTUES OF SUBSIDIARITY 4.1. The Role of Parepistemes in Materials Science 4.2. Some Parepistemes 4.2.1 Metallic Single Crystals 160 4.2.2 Diffusion l66 4.2.3 High-pressure Research 4.2.4 Crystallography 2.5 Superplasticity 179 4.3. Genesis and Integration of Parepistemes CHAPTER 5 THE ESCAPE FROM HANDWAVING 189 5.1. The Birth of Quantitative Theory in Physical Metallurgy
xii Contents 3.2. 3.3. 3.1.2 Phase Equilibria and Metastability 72 3.1.2.1 Metastability 82 3.1.2.2 Non-Stoichiometry 83 Microstructure 84 3.1.3.1 Seeing is Believing 91 Some Other Precursors 93 3.2.1 Old-Fashioned Metallurgy and Physical Metallurgy 94 3.2.2 Polymorphism and Phase Transformations 98 3.2.2.1 Nucleation and Spinodal Decomposition 104 3.2.3 Crystal Defects 105 3.2.3.1 Point Defects 105 3.2.3.2 Line Defects: Dislocations 110 3.2.3.3 Crystal Growth 115 3.2.3.4 Polytypism 119 3.2.3.5 Crystal Structure, Crystal Defects and Chemical Reactions 121 3.2.4 Crystal Chemistry and Physics 124 3.2.5 Physical Mineralogy and Geophysics 129 Early Role of Solid-State Physics 130 3.3.1 Quantum Theory and Electronic Theory of Solids 131 3.3.1.1 Understanding Alloys in Terms of Electron Theory 134 3.3.2 Statistical Mechanics 138 3.3.3 Magnetism 140 3.1.3 CHAPTER 4 THE VIRTUES OF SUBSIDIARITY 159 4,1. 4.2. 4.3. The Role of Parepistemes in Materials Science Some Parepistemes 4.2.1 Metallic Single Crystals 4.2.2 Diffusion 4.2.3 High-pressure Research 4.2.4 Crystallography 4.2.5 Superplasticity Genesis and Integration of Parepistemes 159 160 160 166 171 176 179 181 CHAPTER 5 THE ESCAPE FROM HANDWAVING 189 5.1. The Birth of Quantitative Theory in Physical Metallurgy 189
Contents 5.1.1 Dislocation Theory 191 5.1.2 Other quantitative triumphs 5.1.2.2 Deformation -Mechanism and Materials Selection Maps 200 5.1.2.3 Stereology 5.1.3 Radiation Damage 205 CHAPTER 6 CHARACTERIZATION 6. 1. Introduction 213 6. 2. Examination of microstructure 6.2. 1 The Optical Microscope 215 6.2.2 Electron Microscopy 6. 2. 2. 1 Transmission Electron Microscop 218 6.2.2.2 Scanning Electron Microscopy 222 6.2.2.3 Electron Microprobe Analysis 6.2.3 Scanning Tunneling Microscopy and Its Derivati 230 6. 2. 4 Field-Ion Microscopy and the Atom Probe 6. 3. Spectrometric Techniques 234 63 1 Trace Element Analysis 6.3.2 Nuclear Methods 6. 4. Thermoanalytical Methods 6.5. Hardness 243 6.6. Concluding Considerations 245 CHAPTER 7 FUNCTIONAL MATERIALS 7.1 duction 253 trical materials 253 7.2.1 Semiconduct 253 7.2.1.1 Silicon and Germanium 7.2.1.2 Physicists, Chemists and Metallurgists Cooperate 250 7.2.1.3 (Monolithic)Integrated Circuits 262 7. 2. 1. 4 Band Gap Engineering: Confined Heterostructures 265 7. 2. 1.5 Photovoltaic Cells
Contents xiii 5.1.1 5.1.2 5.1.3 Dislocation Theory Other quantitative triumphs 5.1.2.1 Pasteur's Principle 5.1.2.2 Deformation-Mechanism and Materials Selection Maps 5.1.2.3 Stereology Radiation Damage 191 196 198 200 203 205 CHAPTER 6 CHARACTERIZATION 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Introduction Examination of Microstructure 6.2.1 The Optical Microscope 6.2.2 Electron Microscopy 6.2.2.1 Transmission Electron Microscopy 6.2.2.2 Scanning Electron Microscopy 6.2.2.3 Electron Microprobe Analysis 6.2.3 Scanning Tunneling Microscopy and Its Derivatives 6.2.4 Field-Ion Microscopy and the Atom Probe Spectrometric Techniques 6.3.1 Trace Element Analysis 6.3.2 Nuclear Methods Thermoanalytical Methods Hardness Concluding Considerations 213 213 214 215 217 218 222 226 230 232 234 235 236 240 243 245 CHAPTER 7 FUNCTIONAL MATERIALS 7,1. 7.2. Introduction Electrical Materials 7.2.1 Semiconductors 7.2.1.1 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 Silicon and Germanium Physicists, Chemists and Metallurgists Cooperate (Monolithic) Integrated Circuits Band Gap Engineering: Confined Heterostructures Photovoltaic Cells 253 253 253 253 256 259 262 265 269
Contents 7. 2.2 Electrical Ceramics 271 7. 2.2.1 Ferroelectrics 274 7.2.2.2 Superionic Conductors 7. 2.2.3 Thermoelectric Materials 7. 2.2.4 Superconducting Ceramics 279 7.3. Magnetic Ceramics 7. 4. Computer Memories 285 7.5. Optical Glass 7.5.1 Optical Fibers 295 7.7. Xerography 78.E 298 chaPter 8 THE POLYMER REVOLUTION 8. 1. Beginnings 8.2. Polymer Synthesis oncepts in Polymer Science 310 8.4. Crystalline and Semicrystalline Polymers 312 8.4. 1 Spherulites 312 8.4.2 Lamellar Polymer Crystal 313 8.4.3 Semicrystallinit 8.4.4 Plastic Deformation of Semicrystalline polymers 8.4.5 Polymer Fib 321 8.5. Statistical Mechanics of Polymers 321 8.5. 1 Rubberlike Elasticity: Elastomers 323 8.5.2 Diffusion and Reptation in Polymers 8.5.4 Phase Transition in Polymers 8.6. Polymer Processing 8.7. Determining Molecular Weights 330 8.8. Polymer Surfaces and Adhesion 331 8.9. Electrical Properties of Polymers 8.9.1 Semiconducting Polymers and Devices chaPTer 9 CRAFT TURNED INTO SCIENCE 9. 1. Metals and Alloys for Engineering, Old and New 343
xiv Contents 7.3. 7.4. 7.5. 7.6. 7.7. 7.8. 7.2.2 Electrical Ceramics 7.2.2.1 Ferroelectrics 7.2.2.2 Superionic Conductors 7.2.2.3 Thermoelectric Materials 7.2.2.4 Superconducting Ceramics Magnetic Ceramics Computer Memories Optical Glass 7.5.1 Optical Fibers Liquid Crystals Xerography Envoi 271 274 276 277 279 281 285 289 291 295 297 298 CHAPTER 8 THE POLYMER REVOLUTION 307 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. 8.9. Beginnings Polymer Synthesis Concepts in Polymer Science Crystalline and Semicrystalline Polymers 8.4.1 Spherulites 8.4.2 Lamellar Polymer Crystals 8.4.3 Semicrystallinity 8.4.4 Plastic Deformation of Semicrystalline Polymers 8.4.5 Polymer Fibers Statistical Mechanics of Polymers 8.5.1 Rubberlike Elasticity: Elastomers 8.5.2 Diffusion and Reptation in Polymers 8.5.3 Polymer Blends 8.5.4 Phase Transition in Polymers Polymer Processing Determining Molecular Weights Polymer Surfaces and Adhesion Electrical Properties of Polymers 8.9.1 Semiconducting Polymers and Devices 307 308 310 312 312 313 317 319 321 321 323 326 326 328 329 330 331 332 333 CHAPTER 9 CRAFT TURNED INTO SCIENCE 343 9.1. Metals and Alloys for Engineering, Old and New 343
Content 9.1.1 Solidification and Casting 9. 1.1. 1 Fusion Welding 9.1.2 Steels 9.1.3 Superalloys 352 9.1.4 Intermetallic Compounds 9. 1.5. High-purity Metals 357 9. 2. Plastic Forming and Fracture of Metals and Alloys and 3. The Evolution of Advanced Ceramics 362 9.3.1 Porcelai 9.3.2 The Birth of High-Tech Ceramics: Lamps 9.4. Sintering and Powder Compaction 367 9.4.1 Pore-free Sintering Strong Structural Ceramics 375 9.5.1 Silicon Nitride 377 9.5.2 Other Ceramic Developments 9. 6. Glass-ceramics CHAPTER 1O MATERIALS IN EXTREME STATES 10. 1. Forms of Extremity 393 10.2. Extreme Treatments 10.2.1 Rapid solidification 10.2.1.1 Metallic Glasses 396 10.2. 1.2 Other Routes to Amorphization 397 10.3. Extreme microstructures 10.3.1 Nanostructured materials 398 10.3.2 Microsieves via Particle Tracks 10.4. Ultrahigh Vacuum and Surface Science 10.4.1 The Origins of Modern Surface Science 10.4.2 The Creation of Ultrahigh Vacuum 10.4.3 An Outline of surface science 407 10.5. Extreme Thinness 10.5.1 Thin films 410 10.5.1. 1 Epitaxy 10.5. 1.2 Metallic Multilayers 413 10.6. Extreme Symmetry 414 0.6. 1 Quasicrystals 414 10.7. Extreme States Compared 418
Contents xv 9.2. 9.3. 9.4. 9.5. 9.6. 9.1.1 Solidification and Casting 9.1.1.1 Fusion Welding 9.1.2 Steels 9.1.3 Superalloys 9.1.4 Intermetallic Compounds 9.1.5. High-purity Metals Plastic Forming and Fracture of Metals and Alloys and of Composites The Evolution of Advanced Ceramics 9.3.1 Porcelain 9.3.2 The Birth of High-Tech Ceramics: Lamps Sintering and Powder Compaction 9.4.1 Pore-free Sintering Strong Structural Ceramics 9.5.1 Silicon Nitride 9.5.2 Other Ceramic Developments Glass-ceramics 343 348 348 352 355 357 358 362 362 364 367 372 375 377 379 380 CHAPTER l0 MATERIALS IN EXTREME STATES 393 10.1. Forms of Extremity 10.2. Extreme Treatments 10.2.1 Rapid Solidification 10.2.1.1 Metallic Glasses 10.2.1.2 Other Routes to Amorphization 10.3. Extreme Microstructures 10.3.1 Nanostructured Materials 10.3.2 Microsieves via Particle Tracks 10.4. Ultrahigh Vacuum and Surface Science 10.4.1 The Origins of Modern Surface Science 10.4.2 The Creation of Ultrahigh Vacuum 10.4.3 An Outline of Surface Science 10.5. Extreme Thinness 10.5.1 Thin Films 10.5.1.1 Epitaxy 10.5.1.2 Metallic Multilayers 10.6. Extreme Symmetry 10.6.1 Quasicrystals 10.7. Extreme States Compared 393 393 393 396 397 398 398 401 403 403 404 407 410 410 412 413 414 414 418
Conten CHAPTER II MATERIALS CHEMISTRY AND BIOMIMETICS 425 I1.1. The Emergence of Materials Chemistry 425 427 11.1.2 Self-Assembly, alias Supramolecular Chemistry 428 11. 2. Selected Topics in Materials Chemistry 431 1 1.2.1 Self-Propagating High-Temperature Reactions 11.2.2 Supercritical Solvents 432 1 1.2.3 Langmuir-Blodgett Films 433 11. 2. 4 Colossal Magnetoresistance: the Manganin 436 11. 2. 5 Novel Methods for Making Carbon and Ceramic Materials and Artefacts 11.2.6 Fullerenes and Carbon Nanotubes 1 1.2.7 Combinatorial Materials Synthesis and Screening 444 11.3, Electrochemistry 11.3.1 Modern Storage Batteries 11.3. 1 1 Crystalline lonic Conductors 11,3 1.2 Polymeric Ionic Conductors 1.3. 1.3 Modern Storage Batteries(Resumed) 451 11.3.2 Fuel Cells 11.3.3 Chemical Sensors 1 1.3.4 Electrolytic Metal Extraction 456 11.3.5 Metallic Corrosion CHAPTER 12 COMPUTER SIMULATION 465 12. 1. Beginnings 12. 2. Computer Simulation in Materials Science 12.2. 1 Molecular Dynamics(MD) Simulations 12.21.1 Interatomic potentials 471 12.2.2 Finite-Element Simulations 473 12.2.3 Examples of Simulation of a Material 474 12.2.3.1 Grain Boundaries in Silicon 474 12.2.3.2 Colloidal Crystals 475 12.2.3. 3 Grain Growth and Other Microstructural Changes 475 12.2.3. 4 Computer-Modeling of Polymers 12.2.3. 5 Simulation of Plastic Deformation 12.3. Simulations Based on Chemical Thermodynamics 482
xvi Contents CHAPTER 11 MATERIALS CHEMISTRY AND BIOMIMETICS 425 11.1. The Emergence of Materials Chemistry 11.1.1 Biomimetics 11.1.2 Self-Assembly, alias Supramolecular Chemistry 11.2. Selected Topics in Materials Chemistry 11.2.1 Self-Propagating High-Temperature Reactions 11.2.2 Supercritical Solvents 11.2.3 Langmuir-Blodgett Films 11.2.4 Colossal Magnetoresistance: the Manganites 11.2.5 Novel Methods for Making Carbon and Ceramic Materials and Artefacts 11.2.6 Fullerenes and Carbon Nanotubes 11.2.7 Combinatorial Materials Synthesis and Screening 11.3. Electrochemistry 11.3.1 Modern Storage Batteries 11.3.1.1 Crystalline Ionic Conductors 11.3.1.2 Polymeric Ionic Conductors 11.3.1.3 Modern Storage Batteries (Resumed) 11.3.2 Fuel Cells 11.3.3 Chemical Sensors 11.3.4 Electrolytic Metal Extraction 11.3.5 Metallic Corrosion 425 427 428 431 431 432 433 436 438 439 444 446 448 449 449 451 452 454 456 456 CHAPTER 12 COMPUTER SIMULATION 465 12.1. Beginnings 465 12.2. Computer Simulation in Materials Science 468 12.2.1 Molecular Dynamics (MD) Simulations 469 12.2.1.1 Interatomic Potentials 471 12.2.2 Finite-Element Simulations 473 12.2.3 Examples of Simulation of a Material 474 12.2.3.1 Grain Boundaries in Silicon 474 12.2.3.2 Colloidal 'Crystals' 475 12.2.3.3 Grain Growth and Other Microstructural Changes 475 12.2.3.4 Computer-Modeling of Polymers 478 12.2.3.5 Simulation of Plastic Deformation 481 12.3. Simulations Based on Chemical Thermodynamics 482