第14卷第6期 智能系统学报 Vol.14 No.6 2019年11月 CAAI Transactions on Intelligent Systems Nov.2019 D0:10.11992/tis.201905039 网络出版地址:http:/kns.cnki.net/kcms/detail/23.1538.TP.20190916.1053.002.html 三支决策-基于粗糙集与粒计算研究视角 刘盾',李天瑞2,杨新3,梁德翠4 (1.西南交通大学经济管理学院,四川成都610031,2.西南交通大学信息科学与技术学院,四川成都611756 3.西南财经大学经济信息工程学院,四川成都611130:4.电子科技大学经济与管理学院,四川成都610054) 摘要:从三支决策3个历史发展阶段出发,通过粗糙集和粒计算两个研究视角对三支决策的发展踪迹和演化 过程进行介绍。分析了三支决策与粗糙集理论的历史脉络、内在联系和相互关系,探讨了决策粗糙集、概率粗 糙集、粗糙集和三支决策之间的包含关系:探讨了基于多层次粒计算和多视角粒计算下的三支决策方法;提出 了一个基于三支决策的粒计算研究框架模型。最后,给出了三支决策的研究现状和未来发展方向。 关键词:三支决策:粒计算:粗糙集理论:多层次:多视角:多粒度:概率粗糙集:决策粗糙集:学习代价 中图分类号:TP18文献标志码:A文章编号:1673-4785(2019)06-1111-10 中文引用格式:刘盾,李天瑞,杨新,等.三支决策-基于粗糙集与粒计算研究视角J.智能系统学报,2019,14(6): 1111-1120. 英文引用格式:LIUDun,LI Tianrui,,YANG Xin,etal.Three-way decisions:research perspectives for rough sets and granular computing J].CAAI transactions on intelligent systems,2019,14(6):1111-1120. Three-way decisions:research perspectives for rough sets and granular computing LIU Dun',LI Tianrui,YANG Xin',LIANG Decui (1.School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China;2.School of Information Sci- ence and Technology,Southwest Jiaotong University,Chengdu 611756,China;3.School of Economic Information Engineering. Southwest University of Finance and Economics,Chengdu 611130,China:4.School of Management and Economics,University of Electronic Science and Technology of China,Chengdu 610054,China) Abstract:With the developments of three historical stages on three-way decisions(3WD),this paper introduces the de- velopment track and evolution process of 3WD.Firstly,the historical context,internal connections and relations between 3WD and rough sets are carefully investigated.The inclusion relation among decision-theoretic rough sets, probabilistic rough sets,rough sets and 3WD is also discussed.Secondly,we discuss the methodology of 3WD via gran- ular computing with two strategies of"multi-level"and"multi-view".Thirdly,we propose a novel framework model of granular computing with 3WD.Finally,this paper gives the research status and future research directions of 3WD. Keywords:three-way decisions;granular computing;rough set theory;multi-level;multi-view;multi-granularity;prob- abilistic rough sets,decision-theoretic rough sets,learning cost 三支决策(Three-way decisions,.3WD)是由加 分,并对不同子集或部分采取不同的决策行为或 拿大学者Yao四在2010年提出的一种朴素的“三 分治策略,进而对相应的行为或策略进行评价和 分而治”和“化繁为简”的决策理论,其核心思想是 反馈。由于三支决策符合人类思维和认知特点, 通过粒计算将论域(整体)分为3个子集或3个部 且能较好地处理实际决策过程中出现的不确定性 问题,它一经提出便得到国内外学者的广泛关 收稿日期:2019-05-28.网络出版日期:2019-09-16. 基金项目:国家自然科学基金项目(61876157,71571148, 注,并已成为一种重要的粒计算和知识发现研究 71401026):西南交通大学“双一流”建设项目(JD SYLYB2018020). 方法。 通信作者:刘盾.E-mail:newton83@163.com 纵观三支决策发展脉络,它经历了孵化期
DOI: 10.11992/tis.201905039 网络出版地址: http://kns.cnki.net/kcms/detail/23.1538.TP.20190916.1053.002.html 三支决策−基于粗糙集与粒计算研究视角 刘盾1 ,李天瑞2 ,杨新3 ,梁德翠4 (1. 西南交通大学 经济管理学院,四川 成都 610031; 2. 西南交通大学 信息科学与技术学院,四川 成都 611756; 3. 西南财经大学 经济信息工程学院,四川 成都 611130; 4. 电子科技大学 经济与管理学院,四川 成都 610054) 摘 要:从三支决策 3 个历史发展阶段出发,通过粗糙集和粒计算两个研究视角对三支决策的发展踪迹和演化 过程进行介绍。分析了三支决策与粗糙集理论的历史脉络、内在联系和相互关系,探讨了决策粗糙集、概率粗 糙集、粗糙集和三支决策之间的包含关系;探讨了基于多层次粒计算和多视角粒计算下的三支决策方法;提出 了一个基于三支决策的粒计算研究框架模型。最后,给出了三支决策的研究现状和未来发展方向。 关键词:三支决策;粒计算;粗糙集理论;多层次;多视角;多粒度;概率粗糙集;决策粗糙集;学习代价 中图分类号:TP18 文献标志码:A 文章编号:1673−4785(2019)06−1111−10 中文引用格式:刘盾, 李天瑞, 杨新, 等. 三支决策−基于粗糙集与粒计算研究视角 [J]. 智能系统学报, 2019, 14(6): 1111–1120. 英文引用格式:LIU Dun, LI Tianrui, YANG Xin, et al. Three-way decisions: research perspectives for rough sets and granular computing[J]. CAAI transactions on intelligent systems, 2019, 14(6): 1111–1120. Three-way decisions: research perspectives for rough sets and granular computing LIU Dun1 ,LI Tianrui2 ,YANG Xin3 ,LIANG Decui4 (1. School of Economics and Management, Southwest Jiaotong University, Chengdu 610031, China; 2. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China; 3. School of Economic Information Engineering, Southwest University of Finance and Economics, Chengdu 611130, China; 4. School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 610054, China) Abstract: With the developments of three historical stages on three-way decisions (3WD), this paper introduces the development track and evolution process of 3WD. Firstly, the historical context, internal connections and relations between 3WD and rough sets are carefully investigated. The inclusion relation among decision-theoretic rough sets, probabilistic rough sets, rough sets and 3WD is also discussed. Secondly, we discuss the methodology of 3WD via granular computing with two strategies of “multi-level” and “multi-view”. Thirdly, we propose a novel framework model of granular computing with 3WD. Finally, this paper gives the research status and future research directions of 3WD. Keywords: three-way decisions; granular computing; rough set theory; multi-level; multi-view; multi-granularity; probabilistic rough sets; decision-theoretic rough sets; learning cost 三支决策 (Three-way decisions, 3WD) 是由加 拿大学者 Yao [1] 在 2010 年提出的一种朴素的“三 分而治”和“化繁为简”的决策理论,其核心思想是 通过粒计算将论域 (整体) 分为 3 个子集或 3 个部 分,并对不同子集或部分采取不同的决策行为或 分治策略,进而对相应的行为或策略进行评价和 反馈。由于三支决策符合人类思维和认知特点, 且能较好地处理实际决策过程中出现的不确定性 问题,它一经提出便得到国内外学者的广泛关 注,并已成为一种重要的粒计算和知识发现研究 方法。 纵观三支决策发展脉络,它经历了孵化期 收稿日期:2019−05−28. 网络出版日期:2019−09−16. 基金项目:国家自然科学基金项 目 (61876157, 71571148, 71401026);西南交通大学“双一流”建设项目 (JDSYLYB2018020). 通信作者:刘盾. E-mail:newton83@163.com. 第 14 卷第 6 期 智 能 系 统 学 报 Vol.14 No.6 2019 年 11 月 CAAI Transactions on Intelligent Systems Nov. 2019
·1112· 智能系统学报 第14卷 (1980一2006)、羽化期(2007一2026)、成长期 确定性三支决策、三支决策约简和规则获取、三 (2017一现在)3个阶段。对三支决策的思考最 支决策分类与聚类、代价敏感三支决策等是当前 早可追潮到20世纪80年代波兰数学家Pawlak提 研究的热点。刘盾等3考虑了不确定性决策环 出的粗糙集理论。众所周知,粗糙集理论是通过 境下,当损失函数为几类典型的不确定性测度 上下近似集对论域进行划分的,下近似集诱导的 时,相应三支决策阈值的获取方法;进而将随机 规则表示确定性规则;上近似集诱导的规则表示 性、区间性和模糊性三种不确定度量引入到三支 可能性规则。在这一时期,人们主要关注由下近 决策中,提出了一系列不确定性三支决策模型。 似集诱导的确定性规则.而完全忽略由上近似集 李华雄19等分别从保持正域最大、决策风险最 补集诱导的另一种确定性规则,究其原因是由于 小和代价敏感最小化等方面,对三支决策约简和 前者包含了有用(有趣)知识,对于决策者而言最 规则获取作了大量工作。张贤勇等20从粗糙集 有价值。三支决策的发展契机是20世纪90年代 正域、边界域和负域3个层次对三支决策约简作 Yao)提出的决策粗糙集理论。决策粗糙集首次 了探讨。任睿思等将三支决策引入到概念格 将决策风险的概念引入到粗糙集理论中,通过贝 中,系统地研究了三支概念格的约简理论与方 叶斯风险最小决策准则将论域划分为正域、负域 法。于洪等2]探讨了三支决策的聚类分析模型 和边界域3个区域。从正域里得到的正向确定性 和聚类数的自动学习算法。周冰21和刘盾2 规则表示接受某概念(acceptance);从负域里得到 分别讨论了基于贝叶斯决策和Logistic回归的多 的负向确定性规则表示拒绝某概念(rejection):从 分类三支决策模型。闵帆等研究了基于代价 边界域里得到的不确定规则用于延迟决策(defer-- 敏感的三支决策方法。Li等2)在三支决策划分 ment)。这赋予了粗糙集理论一种新的语义解释, 正、负域的基础上构建了两个边界向量,利用粗 并开启了狭义三支决策研究时代。随着对粒计算 糙集方法和质心解来处理不确定边界的三支决策 和三支决策理论的不断深入研究,学者们纷纷意 模型;Zhang等61提出了一种三向增强卷积神经 识到仅仅从粗糙集这一狭义视角来探讨三支决策 网络模型,提高了三支决策的分类性能。在应用 已显得过于狭隘,对三支决策内涵和外延的理解 层面上,张恒汝2叨和汪敏2等分别探讨了基于随 应该更加广泛和深刻,系列广义三支决策研究如 机森林、回归分析和主动学习的三支推荐系统。 雨后春笋般在机器学习、数据挖掘、模式识别、推 Zhou等2将三支决策思想用到垃圾邮件过滤上, 荐系统、认知模型、形式概念分析、数理逻辑、商 所有待分类的邮件被分为正确邮件、垃圾邮件和 空间等领域崛起并得到迅猛发展,对三支决策的 可疑邮件。李华雄等B0将序贯三支决策算法应 狭义解释也延伸为三要素、三部分、三分量、三层 用到人脸识别中,取得了良好的效果。Li等川在 次、三阶段、三步骤、三种类等广义认知46。 文本分类过程中将所有文本分为3种类型,即相 经过近40年的发展,三支决策已在理论、方 关文本、可能相关文本和不相关文本。在产品检 法和应用上取得了一系列研究成果。在理论层面 验上,Woodward和Naylor将生产产品划分为合 上,现有文献主要集中在三支决策空间、三支认 格产品,不合格产品和需要进一步检测的产品三 知模型、三支逻辑、三支形式概念分析等三支决 种类型。刘盾等$将三支决策方法应用到石油 策与数学理论的交叉研究上。胡宝清)提出了三 开采和政策制定问题中,并从管理视角分析了延 支决策空间的概念,并从数学上将模糊集、随机 迟决策策略对决策过程的影响。上述研究从不同 集、粗糙集等统一到三支决策空间研究框架中。 学科、不同视角和不同维度极大地促进了三支决 李小南等侧提出了一种一般性的三支决策理论, 策研究的发展。 它主要从子集评估的视角进行模型构造的。Yao四 此外,自2009年以来,国际粗糙集学会(RSS) 系统地研究了三支决策与认知计算的理论和方 在每年的国际粗糙集联合学术会议上都举办了三 法,并认为认知计算是三支决策未来研究的一个 支决策Workshop;中国粒计算与知识发现学会 重要方向。李金海等提出了一种基于多粒度 (CGCKD)也从2011年起组织了“三支决策、粒计 的三支概念认知学习模型,并进一步研究了认知 算与粗糙集”相关的主题研讨会;国内外学者也相 概念的增量学习方法。Davide等u探讨了三支 继出版了《三支决策理论与应用》[、《三支决 决策下的三值逻辑问题,并深入探讨了三支决策 策与粒计算》B)、《三支决策:复杂问题求解方 与三值逻辑之间的关系。祁建军等讨论了三 法与实践》、《粒计算、商空间及三支决策的 支决策与概念格的理论模型,这赋予了形式概念 回顾与发展》B等多部专著来介绍三支决策的 分析和概念格新的语义解释。在方法层面上,不 最新研究进展;国际重要信息科学SCI期刊《In-
(1980—2006)、羽化期 (2007—2026)、成长期 (2017—现在)3 个阶段[2]。对三支决策的思考最 早可追溯到 20 世纪 80 年代波兰数学家 Pawlak 提 出的粗糙集理论。众所周知,粗糙集理论是通过 上下近似集对论域进行划分的,下近似集诱导的 规则表示确定性规则;上近似集诱导的规则表示 可能性规则。在这一时期,人们主要关注由下近 似集诱导的确定性规则,而完全忽略由上近似集 补集诱导的另一种确定性规则,究其原因是由于 前者包含了有用 (有趣) 知识,对于决策者而言最 有价值。三支决策的发展契机是 20 世纪 90 年代 Yao [3] 提出的决策粗糙集理论。决策粗糙集首次 将决策风险的概念引入到粗糙集理论中,通过贝 叶斯风险最小决策准则将论域划分为正域、负域 和边界域 3 个区域。从正域里得到的正向确定性 规则表示接受某概念 (acceptance);从负域里得到 的负向确定性规则表示拒绝某概念 (rejection);从 边界域里得到的不确定规则用于延迟决策 (deferment)。这赋予了粗糙集理论一种新的语义解释, 并开启了狭义三支决策研究时代。随着对粒计算 和三支决策理论的不断深入研究,学者们纷纷意 识到仅仅从粗糙集这一狭义视角来探讨三支决策 已显得过于狭隘,对三支决策内涵和外延的理解 应该更加广泛和深刻,系列广义三支决策研究如 雨后春笋般在机器学习、数据挖掘、模式识别、推 荐系统、认知模型、形式概念分析、数理逻辑、商 空间等领域崛起并得到迅猛发展,对三支决策的 狭义解释也延伸为三要素、三部分、三分量、三层 次、三阶段、三步骤、三种类等广义认知[4-6]。 经过近 40 年的发展,三支决策已在理论、方 法和应用上取得了一系列研究成果。在理论层面 上,现有文献主要集中在三支决策空间、三支认 知模型、三支逻辑、三支形式概念分析等三支决 策与数学理论的交叉研究上。胡宝清[7] 提出了三 支决策空间的概念,并从数学上将模糊集、随机 集、粗糙集等统一到三支决策空间研究框架中。 李小南等[8] 提出了一种一般性的三支决策理论, 它主要从子集评估的视角进行模型构造的。Yao [9] 系统地研究了三支决策与认知计算的理论和方 法,并认为认知计算是三支决策未来研究的一个 重要方向。李金海等[10] 提出了一种基于多粒度 的三支概念认知学习模型,并进一步研究了认知 概念的增量学习方法。Davide 等 [11] 探讨了三支 决策下的三值逻辑问题,并深入探讨了三支决策 与三值逻辑之间的关系。祁建军等[12] 讨论了三 支决策与概念格的理论模型,这赋予了形式概念 分析和概念格新的语义解释。在方法层面上,不 确定性三支决策、三支决策约简和规则获取、三 支决策分类与聚类、代价敏感三支决策等是当前 研究的热点。刘盾等[13-16] 考虑了不确定性决策环 境下,当损失函数为几类典型的不确定性测度 时,相应三支决策阈值的获取方法;进而将随机 性、区间性和模糊性三种不确定度量引入到三支 决策中,提出了一系列不确定性三支决策模型。 李华雄[17-19] 等分别从保持正域最大、决策风险最 小和代价敏感最小化等方面,对三支决策约简和 规则获取作了大量工作。张贤勇等[20] 从粗糙集 正域、边界域和负域 3 个层次对三支决策约简作 了探讨。任睿思等[21] 将三支决策引入到概念格 中,系统地研究了三支概念格的约简理论与方 法。于洪等[22] 探讨了三支决策的聚类分析模型 和聚类数的自动学习算法。周冰[ 2 3 ] 和刘盾[ 2 4 ] 分别讨论了基于贝叶斯决策和 Logistic 回归的多 分类三支决策模型。闵帆等[19] 研究了基于代价 敏感的三支决策方法。Li 等 [25] 在三支决策划分 正、负域的基础上构建了两个边界向量,利用粗 糙集方法和质心解来处理不确定边界的三支决策 模型;Zhang 等 [26] 提出了一种三向增强卷积神经 网络模型,提高了三支决策的分类性能。在应用 层面上,张恒汝[27] 和汪敏[28] 等分别探讨了基于随 机森林、回归分析和主动学习的三支推荐系统。 Zhou 等 [29] 将三支决策思想用到垃圾邮件过滤上, 所有待分类的邮件被分为正确邮件、垃圾邮件和 可疑邮件。李华雄等[30] 将序贯三支决策算法应 用到人脸识别中,取得了良好的效果。Li 等 [31] 在 文本分类过程中将所有文本分为 3 种类型,即相 关文本、可能相关文本和不相关文本。在产品检 验上,Woodward 和 Naylor[32] 将生产产品划分为合 格产品,不合格产品和需要进一步检测的产品三 种类型。刘盾等[33] 将三支决策方法应用到石油 开采和政策制定问题中,并从管理视角分析了延 迟决策策略对决策过程的影响。上述研究从不同 学科、不同视角和不同维度极大地促进了三支决 策研究的发展。 此外,自 2009 年以来,国际粗糙集学会 (IRSS) 在每年的国际粗糙集联合学术会议上都举办了三 支决策 Workshop;中国粒计算与知识发现学会 (CGCKD) 也从 2011 年起组织了“三支决策、粒计 算与粗糙集”相关的主题研讨会;国内外学者也相 继出版了《三支决策理论与应用》[34] 、《三支决 策与粒计算》[35] 、《三支决策:复杂问题求解方 法与实践》[36] 、《粒计算、商空间及三支决策的 回顾与发展》[37] 等多部专著来介绍三支决策的 最新研究进展;国际重要信息科学 SCI 期刊《In- ·1112· 智 能 系 统 学 报 第 14 卷
第6期 刘盾,等:三支决策-基于粗糙集与粒计算研究视角 ·1113· formation Sciences》、《International Journal of Ap- 集合;R是定义在论域U上的一种二元关系。三 proximate Reasoning》和《Knowledge-.based Sys-. 支决策通过函数∫将论域U划分为3个两两互 tems》等也分别出版多本专辑来介绍各个团队的 不相交的区域:R1-域、R2-域和R-域,即: 最新研究成果。三支决策学习网站(htp:www2.cs. f:U→{R1,R2,R3} (1) uregina.cal/~twd0和三支决策微信公众号也先后推 其中,R1,R2,R3≤U,U=R1UR2UR;R1nR2=O,Rn 出,来介绍三支决策的最新研究动态。 R=O,R1∩R=O。对于R∈U,其补集的构造 本文在充分整理和分析已有研究文献的基础 如下: 上,介绍三支决策的基本模型和框架,并探讨三 Ri=R2URs 支决策与粗糙集理论之间的前世今生。从粒计算 R=R UR (2) “多层次”和“多视角”两个方面来阐述三支决策的 R=R UR2 粒化思想和建模机理。提出了一个基于三支决策 进一步地,Yao.Y.Y深入探讨了三支决策与 的粒计算研究框架模型。最后,对三支决策知识 粒计算的相互关系并提出了一种新的三支决策的 发现理论、方法和未来研究方向作出展望。 “分治效”(Ttrisecting-Acting-Outcome,TAO)模 型,并进一步阐释了三支粒计算思想的作用和意 1 三支决策基本模型与框架 义。图1为该模型的基本框架。 在认知科学时代,三支决策朴素的“分治”思 论域U 想是一种全新的粒计算研究视角和方法,它可以 三分 帮助人们通过粒化策略去思考、求解和处理不确 区域R, 区域R 区域R T-Trisecting 定性复杂问题。众所周知,儒家文化是中国传统 治略 文化的代表,其精髓在于中庸之道。正如《论 策略S, 策略Sz 策略S A-Acting 语·庸也》中所说:“中庸之为德也,其至矣乎。” 它说明:相对于两种极端的处世态度,中庸思想 对于“三分”和“治略”的评价结果 O-Outcome 倡导不偏不倚,折中调和,强调中间点。可以看 图1三支决策TAO模型框架图 到,中庸之道与三支决策的“三”关系密切,其共 Fig.1 The TAO model of three-way decisions 同点为把一个问题“一分为三”。进一步地,《论 在图1中,第一阶段中的“三分”是指把一个 语·先进》中的“过犹不及”和《孟子·尽心章句 整体U划分成3个互不相交的区域,简记为R、 下》中的“尽信书,则不如无书”都恰当地反映了 R2和R;第二阶段中的“治略”是指在“三分”的基 中庸之道中的三分治略,把做事和读书都理解为 础上对不同的区域制定出相应的策略或采取相应 3种境界,即“过、及、不及”和“尽信、信、不信”, 的行动S1、S2和S3,使得整体目标收益/效用最大 强调“三”的辩证思想,即“及”和“信”的重要性。 此外,秦牧的《艺海拾贝·酷肖》中收录了近代书 化或者成本代价最小化;第三阶段“评价结果”是 评估“三分”和“治略”的效果,以便定量评价和改 画大师齐白石说过的一段话:“作画妙在似与不似 之间,太似为媚俗,不似为欺世。”它强调了绘画 进三支决策。上述3个阶段相互影响、相互制 作品不能不逼真,画什么东西不像什么东西,这 约:“三分”是“治略”的前提,“治略”是“三分”的目 是对观者的欺骗。但又不能拘泥于物象外在的形 的,而“评价结果”是“三分”和“治略”的监督保 象,而应该抓住物象特有的内在本质,发挥艺术 障。如何构造一个整体的三分,如何设计策略去 想象,或突出或夸张,融入作者的情趣思考,体现 处理三分后的三个区域,如何评价三分和策略的 出不同其他特象的独有特点。由此可见,三支决 效果,是三支TAO模型的核心任务。下面,我们 策思想突破了传统二值、二元或两极思维的束 引入几种不同的定量评价函数来刻画三支决策 缚,将传统二支决策中的非黑即白、非对即错、非 “三分”的数学表达。 左即右、非上即下、非好即坏的绝对二类判定扩 定义2假设U是一个有限非空的论域,(L,≤) 展到黑/灰/伯、对仲错、左/中右、上中下、好中/ 是一个全序集合,其中偏序关系满足自反性、反 坏的三分法则。综上所述,三支决策的基本模型 对称性和传递性。给出一个评价函数v:U→L, 可由定义1给出。 对于x∈U,x)代表对象x的评价值。设置一对 定义1假设S=(U,R)为一信息系统,其中: 阈值a和B(B<a),可以将论域U划分为3个决策 U={x,2,…,x}表示论域,它是对象的非空有限 区域R、R2和R:
formation Sciences》、《International Journal of Approximate Reasoning》和《Knowledge-based Systems》等也分别出版多本专辑来介绍各个团队的 最新研究成果。三支决策学习网站 (http://www2.cs. uregina.ca/~twd/) 和三支决策微信公众号也先后推 出,来介绍三支决策的最新研究动态。 本文在充分整理和分析已有研究文献的基础 上,介绍三支决策的基本模型和框架,并探讨三 支决策与粗糙集理论之间的前世今生。从粒计算 “多层次”和“多视角”两个方面来阐述三支决策的 粒化思想和建模机理。提出了一个基于三支决策 的粒计算研究框架模型。最后,对三支决策知识 发现理论、方法和未来研究方向作出展望。 1 三支决策基本模型与框架 在认知科学时代,三支决策朴素的“分治”思 想是一种全新的粒计算研究视角和方法,它可以 帮助人们通过粒化策略去思考、求解和处理不确 定性复杂问题。众所周知,儒家文化是中国传统 文化的代表,其精髓在于中庸之道。正如《论 语·庸也》中所说:“中庸之为德也,其至矣乎。” 它说明:相对于两种极端的处世态度,中庸思想 倡导不偏不倚,折中调和,强调中间点。可以看 到,中庸之道与三支决策的“三”关系密切,其共 同点为把一个问题“一分为三”。进一步地,《论 语·先进》中的“过犹不及”和《孟子·尽心章句 下》中的“尽信书,则不如无书”都恰当地反映了 中庸之道中的三分治略,把做事和读书都理解为 3 种境界,即“过、及、不及”和“尽信、信、不信”, 强调“三”的辩证思想,即“及”和“信”的重要性。 此外,秦牧的《艺海拾贝·酷肖》中收录了近代书 画大师齐白石说过的一段话:“作画妙在似与不似 之间,太似为媚俗,不似为欺世。”它强调了绘画 作品不能不逼真,画什么东西不像什么东西,这 是对观者的欺骗。但又不能拘泥于物象外在的形 象,而应该抓住物象特有的内在本质,发挥艺术 想象,或突出或夸张,融入作者的情趣思考,体现 出不同其他特象的独有特点。由此可见,三支决 策思想突破了传统二值、二元或两极思维的束 缚,将传统二支决策中的非黑即白、非对即错、非 左即右、非上即下、非好即坏的绝对二类判定扩 展到黑/灰/白、对/中/错、左/中/右、上/中/下、好/中/ 坏的三分法则。综上所述,三支决策的基本模型 可由定义 1 给出。 S = (U,R) U = {x1, x2,··· , xn} 定义 1 假设 为一信息系统,其中: 表示论域,它是对象的非空有限 R U f U R1 R2 R3 集合; 是定义在论域 上的一种二元关系。三 支决策通过函数 将论域 划分为 3 个两两互 不相交的区域: -域、 -域和 -域,即: f : U → {R1,R2,R3} (1) R1,R2,R3 ⊆ U U = R1 ∪R2 ∪R3 R1 ∩R2 = Ø R2∩ R3 = Ø R1 ∩R3 = Ø Ri ∈ U 其中, , ; , , 。对于 ,其补集的构造 如下: R c 1 = R2 ∪R3 R c 2 = R1 ∪R3 R c 3 = R1 ∪R2 (2) 进一步地,Yao.Y.Y.深入探讨了三支决策与 粒计算的相互关系并提出了一种新的三支决策的 “分治效”(Ttrisecting-Acting-Outcome,TAO)[2] 模 型,并进一步阐释了三支粒计算思想的作用和意 义。图 1 为该模型的基本框架。 区域 R1 区域 R2 区域 R3 策略 S1 策略 S2 策略 S3 论域 U 三分 T-Trisecting 治略 A-Acting 对于“三分”和“治略”的评价结果 O-Outcome 图 1 三支决策 TAO 模型框架图 Fig. 1 The TAO model of three-way decisions U R1 R2 R3 S 1 S 2 S 3 在图 1 中,第一阶段中的“三分”是指把一个 整体 划分成 3 个互不相交的区域,简记为 、 和 ;第二阶段中的“治略”是指在“三分”的基 础上对不同的区域制定出相应的策略或采取相应 的行动 、 和 ,使得整体目标收益/效用最大 化或者成本/代价最小化;第三阶段“评价结果”是 评估“三分”和“治略”的效果,以便定量评价和改 进三支决策。上述 3 个阶段相互影响、相互制 约:“三分”是“治略”的前提,“治略”是“三分”的目 的,而“评价结果”是“三分”和“治略”的监督保 障。如何构造一个整体的三分,如何设计策略去 处理三分后的三个区域,如何评价三分和策略的 效果,是三支 TAO 模型的核心任务。下面,我们 引入几种不同的定量评价函数来刻画三支决策 “三分”的数学表达。 (L, ⪯) v : U → L ∀x ∈ U v(x) α β β < α 定义 2 假设 U 是一个有限非空的论域, 是一个全序集合,其中偏序关系满足自反性、反 对称性和传递性。给出一个评价函数 , 对于 , 代表对象 x 的评价值。设置一对 阈值 和 ( ),可以将论域 U 划分为 3 个决策 区域 R1、R2 和 R3: 第 6 期 刘盾,等:三支决策−基于粗糙集与粒计算研究视角 ·1113·
·1114· 智能系统学报 第14卷 R1(v(x)={x∈Uv(x)≥a} 种数学描述和解释。 R(vx))=IxEUB<v(x)<a (3) 定义5假设论域U是一个有限非空子集, R3(v(x)={x∈Uv()≤) 我们用一个简单的例子来说明定义1.2018 记apr=(U,R)为粗糙近似空间。U通过等价关系 R划分成互不相交的子集,形成论域U上的一个 年四川省高考理科一本分数线是546分,二本分 划分U/R={[xx∈U。对于XsU,其上下近似可 数线是458分。对于某一考生,高考成绩大于或 等于546分可以报考一本大学:小于458分只能 表示为 apr(X)=(U[x]X): 选择二本以下的专科或职业学院学习;考试分数 apr(X)={x∈UxnX≠O)= (8) 在区间[458,546)进入二本高校学习。进一步 {x∈U-(x≤X) 地,下面定义3和定义4给出了三支多准则决策 上下近似将论域分为正域POS(X)、负域NEG(X) 和三支多目标决策的基本数学模型。 和边界域BND(X),其定义分别为 定义3假设U是一个有限非空的论域, POS(X)apr(X)=[x E Ul[x]cX): (L,≤)是一个全序集合,C={c1,c2,…,cm}是m个决 BND(X)=apr(X)-apr(X) 策准则构成的集合,v%:U→L定义了在准则c:下 {x∈U-(IxX)A-(xSX):= (9) 的评价函数值,1≤i≤m。则对于Yx∈U,其总体 NEG(X)=U-apr(X)= 评价结果可由一个线性加权组合来定义: {x∈UI[x]∈X} B(x)=WiVe(x)+w2Ve(x)+...+WaVe(x) (4) 由正域导出的正规则表示接受对象x属于 %为准则G的权重,它满足∑%=1。 X;由负域导出的负规则表示拒绝接受对象x属 于X:而由边界域导出的不确定规则表示x可能 两个阈值M和W(M>W),其三支多准则决策结 属于X。可以看到,上述“三分而治”的思想赋予 果可表示为 了粗糙集理论一种基于决策视角的语义解释。 R1((x)={x∈U八(x)≥M} 进一步地,我们考虑概率粗糙集的情形,它通 R2((x)={x∈UN<(x)<M (5) R3((x)={x∈U(x)≤N 过引入两个阈值a和B对Pawlak粗糙集上下近 相对于定义2而言,定义3进一步考虑了各个 似集的定义进行扩展,使得获取的决策规则更为 准则的权重,这更符合实际决策问题中的需求。 灵活。 定义4假设U是一个有限非空的论域,U= 定义6假设论域U是一个有限非空子集, RUR2UR3;R1(a,B),R2(a,B)和R3(a,代表3个 R是定义在U上的一种等价关系。记apra=(U,R) 决策区域R、R2和R所产生的决策风险,则总体 为概率粗糙近似空间,对于XSU,令0≤B<a≤1, 决策风险可表示为 则概率粗糙集的(α,β)-上下近似集可定义为 R(a.B)=aR(q.B)+bR2(a.B)+cX:(a.B) (6) apmW=eUIPr(≥a叫l 其中,a、b和c为R1(a,B)、R2(a,B)和R3(a,)相 apr(c.(X)=(xE UIPr(XIIx])>B) (10) 对应的风险系数,三支多目标决策的任务是如何 其中,P(X[x)=I[dnx/Ixl表示分类的条件概 选取合适的α和B值,使得下列式子中的总体决 率,H表示集合中元素的基数。同样地,在概率 策风险最小: 粗糙集中,(α,β)-上下近似集将论域分为3个部 arg min (a,B) (7) 分:POSa.m(X),BND.(X)和NEGa,(X),其定义 值得一提的是,不同于定义2和定义3,式 分别为 POSa.(X)={x∈UIPr(Xx)≥al (7)中α和B的取值不是由决策者事先给定的,而 BND(.(X)=(xEUB<Pr(XI[x])<a) (11) 是在实际决策问题中,通过目标函数和约束条件 NEGa.m(X)={x∈UIPr(X[)≤\ 构建相应的优化数学模型求解得到。 相对于式(9),式(11)进一步考虑了决策规则 2三支决策、粗糙集与决策粗糙集 的容错性,这更符合人类的决策认知。然而,在 定义6中的阈值α和B都是人为事先给定的,这 三支决策思想最早来源于粗糙集理论。众所 在实际决策过程中往往过于主观和难以获取。为 周知,Pawlak粗糙集对信息系统不确定性的描述 了回答和改进上述难题,决策粗糙集将贝叶斯理 是通过上下近似集来实现的。两个近似集对论域 论引入到概率粗糙集中,利用损失函数来构造决 的划分形成3个两两互不相交的决策区域:正 策总体风险最小时的三支决策划分策略,极大地 域、负域和边界域,这自然形成了对三支决策的 推进了粗糙集理论的发展
R1(v(x)) = {x ∈ U| v(x) ⩾ α} R2(v(x)) = {x ∈ U|β < v(x) < α} R3(v(x)) = {x ∈ U|v(x) ⩽ β} (3) 我们用一个简单的例子来说明定义 1。2018 年四川省高考理科一本分数线是 546 分,二本分 数线是 458 分。对于某一考生,高考成绩大于或 等于 546 分可以报考一本大学;小于 458 分只能 选择二本以下的专科或职业学院学习;考试分数 在区间 [458,546) 进入二本高校学习。进一步 地,下面定义 3 和定义 4 给出了三支多准则决策 和三支多目标决策的基本数学模型。 (L, ⪯) C = {c1, c2,··· , cm} vci : U → L ci 1 ⩽ i ⩽ m ∀x ∈ U 定义 3 假 设 U 是一个有限非空的论域, 是一个全序集合, 是 m 个决 策准则构成的集合, 定义了在准则 下 的评价函数值, 。则对于 ,其总体 评价结果可由一个线性加权组合来定义: v¯(x) = w1vc1 (x)+w2vc2 (x)+···+wnvcm (x) (4) wi ci ∑m i=1 wi = 1 M N M > N 其中 为准则 的权重,它满足 。给定 两个阈值 和 ( ),其三支多准则决策结 果可表示为 R1(v¯(x)) = {x ∈ U| v¯(x) ⩾ M} R2(¯v(x)) = {x ∈ U|N < v¯(x) < M} R3(¯v(x)) = {x ∈ U|v¯(x) ⩽ N} (5) 相对于定义 2 而言,定义 3 进一步考虑了各个 准则的权重,这更符合实际决策问题中的需求。 R1 ∪R2 ∪R3 ℜ1(α,β) ℜ2(α,β) ℜ3(α,β) 定义 4 假设 U 是一个有限非空的论域,U = ; , 和 代表 3 个 决策区域 R1、R2 和 R3 所产生的决策风险,则总体 决策风险可表示为 ℜ(α,β) = aℜ1(α, β)+bℜ2(α, β)+cℜ3(α, β) (6) ℜ1(α,β) ℜ2(α,β) ℜ3(α,β) α β 其中,a、b 和 c 为 、 和 相 对应的风险系数,三支多目标决策的任务是如何 选取合适的 和 值,使得下列式子中的总体决 策风险最小: argmin (α,β) ℜ(α, β) (7) α β 值得一提的是,不同于定义 2 和定义 3,式 (7) 中 和 的取值不是由决策者事先给定的,而 是在实际决策问题中,通过目标函数和约束条件 构建相应的优化数学模型求解得到。 2 三支决策、粗糙集与决策粗糙集 三支决策思想最早来源于粗糙集理论。众所 周知,Pawlak 粗糙集对信息系统不确定性的描述 是通过上下近似集来实现的。两个近似集对论域 的划分形成 3 个两两互不相交的决策区域:正 域、负域和边界域,这自然形成了对三支决策的 一种数学描述和解释。 U apr = (U,R) U R U U/R = {[x]|x ∈ U} X ⊆ U 定义 5 假设论域 是一个有限非空子集, 记 为粗糙近似空间。 通过等价关系 划分成互不相交的子集,形成论域 上的一个 划分 。对于 ,其上下近似可 表示为 apr(X) = {x ∈ U|[x] ⊆ X}; apr(X) = {x ∈ U|[x]∩ X , Ø} = {x ∈ U|¬([x] ⊆ X c )} (8) POS(X) NEG(X) BND(X) 上下近似将论域分为正域 、负域 和边界域 ,其定义分别为 POS(X) = apr(X) = {x ∈ U|[x] ⊆ X}; BND(X) = apr(X)−apr(X) {x ∈ U|¬([x] ⊆ X}∧ ¬([x] ⊆ X c )};= NEG(X) = U −apr(X) = {x ∈ U|[x] ⊆ X c } (9) 由正域导出的正规则表示接受对象 x 属于 X;由负域导出的负规则表示拒绝接受对象 x 属 于 X;而由边界域导出的不确定规则表示 x 可能 属于 X。可以看到,上述“三分而治”的思想赋予 了粗糙集理论一种基于决策视角的语义解释。 α β 进一步地,我们考虑概率粗糙集的情形,它通 过引入两个阈值 和 对 Pawlak 粗糙集上下近 似集的定义进行扩展,使得获取的决策规则更为 灵活。 apr(α,β) = (U,R) X ⊆ U 0 ⩽ β < α ⩽ 1 (α,β) 定义 6 假设论域 U 是一个有限非空子集, R 是定义在 U 上的一种等价关系。记 为概率粗糙近似空间,对于 ,令 , 则概率粗糙集的 -上下近似集可定义为 apr (α, β) (X) = {x ∈ U|Pr(X|[x]) ⩾ α} apr(α, β) (X) = {x ∈ U|Pr(X|[x]) > β} (10) Pr(X|[x]) = |[x]∩ X|/|[x]| |·| (α,β) POS(α, β)(X) BND(α, β)(X) NEG(α, β)(X) 其中, 表示分类的条件概 率, 表示集合中元素的基数。同样地,在概率 粗糙集中, -上下近似集将论域分为 3 个部 分: , 和 ,其定义 分别为 POS(α, β)(X) = {x ∈ U|Pr(X|[x]) ⩾ α} BND(α, β)(X) = {x ∈ U|β < Pr(X|[x]) < α} NEG(α, β)(X) = {x ∈ U|Pr(X|[x]) ⩽ β} (11) α β 相对于式 (9),式 (11) 进一步考虑了决策规则 的容错性,这更符合人类的决策认知。然而,在 定义 6 中的阈值 和 都是人为事先给定的,这 在实际决策过程中往往过于主观和难以获取。为 了回答和改进上述难题,决策粗糙集将贝叶斯理 论引入到概率粗糙集中,利用损失函数来构造决 策总体风险最小时的三支决策划分策略,极大地 推进了粗糙集理论的发展。 ·1114· 智 能 系 统 学 报 第 14 卷
第6期 刘盾,等:三支决策-基于粗糙集与粒计算研究视角 ·1115· 决策粗糙集通过2个状态集2={X,X)和 综上所述,三支决策是粗糙集理论的扩展和 3个行动集A={ar,a,aw}来描述三支决策过程。 外延,粗糙集理论是三支决策的特例和内涵。三 其中,状态集2=化,X)表示事件的两种状态(属 支决策理论的提出是来源于粗糙集理论,但高于 于概念X和不属于概念),行动集A={ar,as,aw} 粗糙集理论;而决策粗糙集是三支决策在实际决 表示对于不同状态,采取相对应的接受、延迟和 策语义下的一个特殊数学模型。图2清晰地描绘 拒绝3种行动策略。考虑到采取不同行动会产生 了三支决策、粗糙集理论、概率粗糙集和决策粗 不同的损失,记PP、r、P分别表示当x∈X时, 糙集四者之间的蕴含关系,即决策粗糙集二概率 采取行动ar、as和aw下的损失;同样地,记pw、 粗糙集二粗糙集理论≤三支决策。 N、ww分别表示当x生X时,采取行动ap、ag和 aw下的损失。因此,采取ap、ag和aw3种行动下 的期望损失可分别表示为 、决策粗糙集 R(aPl[x])=入PPPr(XI[x])+入PwPr(X[x]) 概率粗糙集 R(agl[xl)=ABpPr(XI[x])+BN Pr(-XI[x]) (12) R(aNl[x])ANPPr(XI[x])+%NNPr(-XI[x]) 粗糙集理论 根据贝叶斯决策准则,选择期望损失最小的 三支决策 行动集作为最佳行动方案,可以得到如下三条决 策规则: 图2三支决策与相关粗糙集模型间的关系 (P)R(apl[x)≤R(aglx)且R(arl[x)≤R(awIx)同时成 Fig.2 The relations between three-way decisions and 立,则x∈POS(X): rough set models (B)R(asl[x)≤R(arlx)且R(aslx)≤R(awl)同时成 3 立,则x∈BNDX): 三支决策的粒计算方法 (N)R(awlx)≤R(arl[x])且R(anl[x])≤R(aslx)同时 三支决策的粒计算方法是利用“三分治略”思 成立,则x∈NEG(X)。 想来解决粒计算问题的。它通过在现实问题中对 由于Pr(X[x+Pr(-XI[x)=1,上述规则(P)、 粒的抽象、在数学分析中对粒的描述、在模型构 (B)、N)只与分类条件概率Pr(X[x)和损失函数2. 建中对粒间和粒层转换关系的刻画、在算法设计 (·=P,B,W)有关。此外,考虑到接受正确事物的 中对粒的合成与分解、在求解过程中对粒的使 损失不大于延迟接受正确事物的损失,且这两者 都小于拒绝正确事物的损失;类似的,拒绝错误 用,并将三支决策的“分治效”思想作为评估手段 事物的损失不大于延迟拒绝错误事物的损失,且 来分析和处理实际决策问题的。对于粒计算核心 这两者都小于接受错误事物的损失。因此,损失 思想的诠释,近代著名诗人卞之琳在其现代诗《断 函数之间的大小关系满足:0≤pP≤P<wP和 章》有很好的解读: 0≤ww≤w<PN。将条件概率关系和损失函数 你站在桥上看风景, 关系代入到式(11)中,决策规则(P)、(B)、N)可改 看风景的人在楼上看你。 写为 明月装饰了你的窗子, (PI):如果Pr(X[x)≥a,则:x∈POS(X): 你装饰了别人的梦。 (B1):如果B<Pr(X[x)<a,则:x∈BNDX): 诗人通过对“风景”的刹那间感悟,把对粒计 (N1):如果Pr(XI[x)≤B,则:x∈NEG(X。 算中粒子、粒层与粒结构之间的“相对性”认知过 其中: 程表现得淋漓尽致。此外,Yao.Y.Y教授认为粒 (APN-ABN) 计算是一种粒化的思维方式及方法论,将粒计算 (APN-ABN)+(ABP-APP) 和三支决策思想应用于不同学科中,能够对知识 (BN -ANN) B= (13) (BN -ANN)+(INP-APP) 进行有效的整理、抽象和整合,并获取更高一层 (LPN ANN) 的、系统的粒计算原理回。此外,他进一步总结了 Y=(PN-INN)+(ANF-APp) 现有粒计算研究的3个主要观点,并提出了粒计 可以看到,α和B的取值与损失函数.有 算的三元论:一是基于结构化思维的哲学思想, 关,而三支决策的最终结果由条件概率和损失函 二是基于结构化问题求解的方法论,三是基于结 数两者共同决定的。决策粗糙集从贝叶斯最小风 构化信息处理的计算模式。三支决策的粒计算方 险的角度对三支决策做出科学解释,并首次给出 法就是将这3种观点紧密结合,并通过粒化原 种三支决策的精确数学定义。 则、合成原则、分层原则等来构造粒结构,从而获
Ω = {X,¬X} A = {aP,aB,aN} Ω = {X,¬X} A = {aP,aB,aN} λPP λBP λNP x ∈ X aP aB aN λPN λBN λNN x < X aP aB aN aP aB aN 决策粗糙集通过 2 个状态集 和 3 个行动集 来描述三支决策过程。 其中,状态集 表示事件的两种状态 (属 于概念 X 和不属于概念 X),行动集 表示对于不同状态,采取相对应的接受、延迟和 拒绝 3 种行动策略。考虑到采取不同行动会产生 不同的损失,记 、 、 分别表示当 时, 采取行动 、 和 下的损失;同样地,记 、 、 分别表示当 时,采取行动 、 和 下的损失。因此,采取 、 和 3 种行动下 的期望损失可分别表示为 R(aP|[x]) = λPPPr(X|[x])+λPNPr(¬X|[x]) R(aB|[x]) = λBPPr(X|[x])+λBNPr(¬X|[x]) R(aN|[x]) = λNPPr(X|[x])+λNNPr(¬X|[x]) (12) 根据贝叶斯决策准则,选择期望损失最小的 行动集作为最佳行动方案,可以得到如下三条决 策规则: R(aP|[x]) ⩽ R(aB|[x]) R(aP|[x]) ⩽ R(aN|[x]) x ∈ POS(X) (P) 且 同时成 立,则 ; R(aB|[x]) ⩽ R(aP|[x]) R(aB|[x]) ⩽ R(aN|[x]) x ∈ BND(X) (B) 且 同时成 立,则 ; R(aN|[x]) ⩽ R(aP|[x]) R(aN|[x]) ⩽ R(aB|[x]) x ∈ NEG(X) (N) 且 同时 成立,则 。 Pr(X|[x])+Pr(¬X|[x]) = 1 Pr(X|[x]) λ•• (• = P,B,N) 0 ⩽ λPP ⩽ λBP < λNP 0 ⩽ λNN ⩽ λBN < λPN 由 于 ,上述规 则 (P)、 (B)、(N) 只与分类条件概率 和损失函数 有关。此外,考虑到接受正确事物的 损失不大于延迟接受正确事物的损失,且这两者 都小于拒绝正确事物的损失;类似的,拒绝错误 事物的损失不大于延迟拒绝错误事物的损失,且 这两者都小于接受错误事物的损失。因此,损失 函数之间的大小关系满足: 和 。将条件概率关系和损失函数 关系代入到式 (11) 中,决策规则 (P)、(B)、(N) 可改 写为 (P1):如果 Pr(X|[x]) ⩾ α,则:x ∈ POS(X) ; (B1):如果 β < Pr(X|[x]) < α ,则:x ∈ BND(X) ; (N1):如果 Pr(X|[x]) ⩽ β ,则:x ∈ NEG(X)。 其中: α = (λPN −λBN) (λPN −λBN)+(λBP −λPP) β = (λBN −λNN) (λBN −λNN)+(λNP −λPP) γ = (λPN −λNN) (λPN −λNN)+(λNP −λPP) (13) 可以看到,α 和 β 的取值与损失函数 λ•• 有 关,而三支决策的最终结果由条件概率和损失函 数两者共同决定的。决策粗糙集从贝叶斯最小风 险的角度对三支决策做出科学解释,并首次给出 一种三支决策的精确数学定义。 ⊆ ⊆ ⊆ 综上所述,三支决策是粗糙集理论的扩展和 外延,粗糙集理论是三支决策的特例和内涵。三 支决策理论的提出是来源于粗糙集理论,但高于 粗糙集理论;而决策粗糙集是三支决策在实际决 策语义下的一个特殊数学模型。图 2 清晰地描绘 了三支决策、粗糙集理论、概率粗糙集和决策粗 糙集四者之间的蕴含关系,即决策粗糙集 概率 粗糙集 粗糙集理论 三支决策。 决策粗糙集 概率粗糙集 粗糙集理论 三支决策 图 2 三支决策与相关粗糙集模型间的关系 Fig. 2 The relations between three-way decisions and rough set models 3 三支决策的粒计算方法 三支决策的粒计算方法是利用“三分治略”思 想来解决粒计算问题的。它通过在现实问题中对 粒的抽象、在数学分析中对粒的描述、在模型构 建中对粒间和粒层转换关系的刻画、在算法设计 中对粒的合成与分解、在求解过程中对粒的使 用,并将三支决策的“分治效”思想作为评估手段 来分析和处理实际决策问题的。对于粒计算核心 思想的诠释,近代著名诗人卞之琳在其现代诗《断 章》有很好的解读: 你站在桥上看风景, 看风景的人在楼上看你。 明月装饰了你的窗子, 你装饰了别人的梦。 诗人通过对“风景”的刹那间感悟,把对粒计 算中粒子、粒层与粒结构之间的“相对性”认知过 程表现得淋漓尽致。此外,Yao. Y.Y.教授认为粒 计算是一种粒化的思维方式及方法论,将粒计算 和三支决策思想应用于不同学科中,能够对知识 进行有效的整理、抽象和整合,并获取更高一层 的、系统的粒计算原理[2]。此外,他进一步总结了 现有粒计算研究的 3 个主要观点,并提出了粒计 算的三元论:一是基于结构化思维的哲学思想, 二是基于结构化问题求解的方法论,三是基于结 构化信息处理的计算模式。三支决策的粒计算方 法就是将这 3 种观点紧密结合,并通过粒化原 则、合成原则、分层原则等来构造粒结构,从而获 第 6 期 刘盾,等:三支决策−基于粗糙集与粒计算研究视角 ·1115·