mi@seu.edu.cnComponentsofstress,4,27-30应力分量Compositematerials224复合材料fiber-reinforced,stress-strainrelationshipsfor,103-107,134纤维增强复合材料的应力应变本构关系Compression,227压缩modulusof,97大块模量(体积弹性模量)Computations,17计算errorsin,17计算误差Computerproblems编程习题analysisanddesignofbeamsforbending,378-379梁的弯曲分析与设计applying singularityfunctionstodetermineshearandbendingmomentinabeam,355运用奇异函数(初参数方程)求解梁的剪力和弯矩axialloading,138-139轴向荷载columns,690-691压杆conceptofstress,49-51应力概念deflectionofbeams,627-629梁的挠曲energymethods,757-758能量法principalstressesunderagivenloading,545-547给定荷载下的主应力purebending,312-313纯弯曲shearingstressesinbeamsandthin-walledmembers,434-435梁和薄壁杆件中的切应力torsion,218-219扭转transformationsofstressandstrain,510-511应力应变变换Concentratedloads,316集中荷载single,720单个Concentricstress,679同心受载压杆应力Conceptofstress,2-51应力概念computerproblems,49-51编程习题Concrete混凝土maximumstressin,249最大应力propertiesof,129,A14-A15性质6
mi@seu.edu.cn 6 Components of stress, 4, 27–30应力分量 Composite materials, 224复合材料 fiber-reinforced, stress-strain relationships for, 103–107, 134纤维增强复合材料的应力应变 本构关系 Compression, 227压缩 modulus of, 97大块模量(体积弹性模量) Computations, 17计算 errors in, 17计算误差 Computer problems 编程习题 analysis and design of beams for bending, 378–379梁的弯曲分析与设计 applying singularity functions to determine shear and bending moment in a beam, 355运用奇 异函数(初参数方程)求解梁的剪力和弯矩 axial loading, 138–139轴向荷载 columns, 690–691压杆 concept of stress, 49–51应力概念 deflection of beams, 627–629梁的挠曲 energy methods, 757–758能量法 principal stresses under a given loading, 545–547给定荷载下的主应力 pure bending, 312–313纯弯曲 shearing stresses in beams and thin-walled members,434–435梁和薄壁杆件中的切应力 torsion, 218–219扭转 transformations of stress and strain, 510–511应力应变变换 Concentrated loads, 316集中荷载 single, 720 单个 Concentric stress, 679 同心受载压杆应力 Concept of stress, 2–51应力概念 computer problems, 49–51编程习题 Concrete 混凝土 maximum stress in, 249最大应力 properties of, 129, A14–A15性质
mi@seu.edu.cnrenforcedbeamsof,245加强混凝土梁stress-straindiagramfor,61混凝土材料的应力应变图Constantstrength,319,362373等强度Constantsofintegration,determinationof,558积分常数的确定Copper,propertiesof,A12-A13铜的材料性质Coulomb, Charles Augustin de,469-470Coulomb'scriterion,469哥伦布判据Creep,64变Critical load,634临界荷载oncolumns,684压杆临界荷载Critical stress,636临界应力Cupronickel,propertiesof,A14-A15铜镍合金性质Curvature,232曲率,弯曲anticlastic,234,306鞍形面radiusof,224,235,263曲率半径Curvedmembers,bendingof,294-304,308曲杆弯曲Cylindricalthin-walledpressurevessels,stressesin,505薄壁圆柱压力容器中的应力DDeadload,33(死载)自重荷载Deflectionofbeams,70,86-87,548-629梁的挠曲applyingcantileverbeamsandbeamswithsymmetricloadings,595-596,623悬臂梁和对称弯曲梁中的图乘法applyingmoment-area theoremsto beamswith unsymmetric loadings,605-606,625-626图乘法求解不对称受载梁的挠曲applyingsuperpositiontostaticallyindeterminatebeams,582-592,621叠加法求解超静定梁的挠曲bending-momentdiagramsbyparts,597-604,623图乘叠加法求弯矩图boundaryconditions619边界条件byCastigliano'stheorem,736-739,753卡氏定理求解挠曲7
mi@seu.edu.cn 7 renforced beams of, 245加强混凝土梁 stress-strain diagram for, 61混凝土材料的应力应变图 Constant strength, 319, 362, 373等强度 Constants of integration, determination of, 558积分常数的确定 Copper, properties of, A12–A13铜的材料性质 Coulomb, Charles Augustin de, 469–470 Coulomb’s criterion, 469哥伦布判据 Creep, 64蠕变 Critical load, 634临界荷载 on columns, 684压杆临界荷载 Critical stress, 636临界应力 Cupronickel, properties of, A14–A15铜镍合金性质 Curvature, 232曲率,弯曲 anticlastic, 234, 306鞍形面 radius of, 224, 235, 263曲率半径 Curved members, bending of, 294–304, 308曲杆弯曲 Cylindrical thin-walled pressure vessels, stresses in, 505薄壁圆柱压力容器中的应力 D Dead load, 33(死载)自重荷载 Deflection of beams, 70, 86–87, 548–629梁的挠曲 applying cantilever beams and beams with symmetric loadings, 595–596, 623 悬臂梁和对称 弯曲梁中的图乘法 applying moment-area theorems to beams with unsymmetric loadings, 605–606, 625–626图 乘法求解不对称受载梁的挠曲 applying superposition to statically indeterminate beams,582–592, 621叠加法求解超静定梁 的挠曲 bending-moment diagrams by parts, 597–604, 623图乘叠加法求弯矩图 boundary conditions, 619边界条件 by Castigliano’s theorem, 736–739, 753卡氏定理求解挠曲
mi@seu.edu.cncomputerproblems,627-629编程问题directdeterminationoftheelasticcurvefromtheloaddistribution,559-560由荷载直接求解挠曲线equationoftheelasticcurve,553-558,619挠曲线方程introduction,550-552概论maximum,607-608,624,694,722,725,A28最大挠曲methodofsuperposition,580-582,585-587,621叠加法moment-areatheorems,592-595,621-622图乘法reviewproblems,625-626复习习题underasingleload,722-732单载作用下的staticallyindeterminatebeams,561-571,620超静定梁summary,618-624小结undertransverseloading,552-553,618横向荷载作用下的usingmoment-areatheoremswithstaticallyindeterminatebeams,609-617,624图乘法求解超静定梁的挠曲usingsingularityfunctionstodetermine571-580,620-621奇异函数(初参数方程)求解梁的挠曲bythework-energymethod,722-732功能互等法求解梁的挠曲Deformations,54,86-87,113,167,225,561,610.SeealsoElasticdeformations,Plasticdeformations变形,参见弹性变形:塑性变形actual,95,99实际变形underaxialloading.67-71,101-103拉压变形ofabeamundertransverseloading,552-553,618横向弯曲变形inacircularshaft,144-148,210圆轴中的变形computing,17变形计算maximum,716最大变形permanent,224永久变形inasymmetricmemberinpurebending,226-228对称杆件的纯弯曲变形inatransversecrosssection,233-241,306横向截面内的变形Designconsiderations,30-35.SeealsoAnalysisanddesign设计考虑因素,参加设计和分析8
mi@seu.edu.cn 8 computer problems, 627–629编程问题 direct determination of the elastic curve from the load distribution, 559–560由荷载直接求解 挠曲线 equation of the elastic curve, 553–558, 619 挠曲线方程 introduction, 550–552概论 maximum, 607–608, 624, 694, 722, 725, A28最大挠曲 method of superposition, 580–582, 585–587, 621叠加法 moment-area theorems, 592–595, 621–622图乘法 review problems, 625–626复习习题 under a single load, 722–732单载作用下的 statically indeterminate beams, 561–571, 620超静定梁 summary, 618–624小结 under transverse loading, 552–553, 618横向荷载作用下的 using moment-area theorems with statically indeterminate beams, 609–617, 624图乘法求解 超静定梁的挠曲 using singularity functions to determine, 571–580, 620–621奇异函数(初参数方程)求解 梁的挠曲 by the work-energy method, 722–732功能互等法求解梁的挠曲 Deformations, 54, 86–87, 113, 167, 225, 561, 610. See also Elastic deformations; Plastic deformations 变形,参见弹性变形;塑性变形 actual, 95, 99实际变形 under axial loading, 67–71, 101–103拉压变形 of a beam under transverse loading, 552–553, 618横向弯曲变形 in a circular shaft, 144–148, 210圆轴中的变形 computing, 17变形计算 maximum, 716最大变形 permanent, 224永久变形 in a symmetric member in pure bending, 226–228对称杆件的纯弯曲变形 in a transverse cross section, 233–241, 306横向截面内的变形 Design considerations, 30–35.See also Analysis and design 设计考虑因素,参加设计和分析
mi@seu.edu.cnallowableloadandallowablestress31-32,44许用荷载和许用应力determinationoftheultimatestrengthofamaterial,30-31材料强度极限的求解factorofsafety,44安全因素forimpactloads,718-719冲击荷载设计loadandresistancefactors,33,44,341-343荷载和抵抗因数forloads,31荷载设计ofprismaticbeamsforbending,339-349,370-372柱状梁的弯曲设计selectionofanappropriatefactorofsafety,31-33合适的安全因数选择specificationsof,33设计规范oftransmissionshafts143,176-178,518-527,541传动轴的设计*Designconsiderations,oftransmissionshafts,211传动轴的设计考虑因素Designofcolumns压杆设计allowable-stressmethod,662-664,675-676,686许用应力法aluminum,664-665铝underacentricload,660-674,686同轴荷载压杆设计underaneccentricload,675-683,686偏心荷载压杆设计forgreatestefficiency,643最大效率压杆设计interactionmethod,676-677,686交互法设计压杆withloadandresistancefactordesign,667-669荷载和抵抗因数法设计压杆structural steel,662-664,667-669钢杆设计wood,665-667木杆设计Deterioration,32损坏(特指由于缺乏维护或由于有害工作条件而造成的逐渐损坏,如侵蚀、腐蚀)Determination求解、确定ofthebearingstresses,16挤压应力ofconstantsofintegration,558积分常数ofelasticcurve,559-560挠曲线offirstmoment,A4-A6一次矩、静矩of forces,113,441力ofthemomentofinertiaofacompositearea,A10-A11组合面积的惯性矩9
mi@seu.edu.cn 9 allowable load and allowable stress, 31–32, 44许用荷载和许用应力 determination of the ultimate strength of a material,30–31材料强度极限的求解 factor of safety, 44安全因素 for impact loads, 718–719冲击荷载设计 load and resistance factors, 33, 44, 341–343荷载和抵抗因数 for loads, 31荷载设计 of prismatic beams for bending, 339–349, 370–372柱状梁的弯曲设计 selection of an appropriate factor of safety, 31–33合适的安全因数选择 specifications of, 33设计规范 of transmission shafts, 143, 176–178, 518–527, 541传动轴的设计 *Design considerations, of transmission shafts, 211传动轴的设计考虑因素 Design of columns 压杆设计 allowable-stress method, 662–664, 675–676, 686许用应力法 aluminum, 664–665铝 under a centric load, 660–674, 686同轴荷载压杆设计 under an eccentric load, 675–683, 686偏心荷载压杆设计 for greatest efficiency, 643最大效率压杆设计 interaction method, 676–677, 686交互法设计压杆 with load and resistance factor design, 667–669荷载和抵抗因数法设计压杆 structural steel, 662–664, 667–669钢杆设计 wood, 665–667木杆设计 Deterioration, 32损坏(特指由于缺乏维护或由于有害工作条件而造成的逐渐损坏,如侵 蚀、腐蚀) Determination 求解、确定 of the bearing stresses, 16挤压应力 of constants of integration, 558积分常数 of elastic curve, 559–560挠曲线 of first moment, A4–A6一次矩、静矩 of forces, 113, 441力 of the moment of inertia of a composite area, A10–A11组合面积的惯性矩
mi@seu.edu.cnofthenormalstress14-15正应力oftheshearingstress,15-16切应力oftheshearingstressesinabeam,386-387,428弯曲梁中的切应力oftheultimatestrengthofamaterial30-31,44材料强度极限Deviation,tangential,594偏离,切向Diagonalstays,52-53斜拉索(斜拉桥中的拉索)Diagrams图free-body,4,17-18,34-35,42,70-71受力简图loading.357荷载图ofshear,319-328,333-335,342-343,370-371剪力图ofshearandbending-moment,319-328,370-371,597-604,623剪力图和弯矩图ofstress-strainrelationships,54,56-61,129,186,716应力应变图Dilatation,97,132体应变bulkmodulus,96-98,132大块模量Dimensionlessquantities,56无量纲量Discontinuity,350不连续Displacement,relative,69相对位移Distributedloading,316,613分布荷载Distributionofstresses应力分布inanarrowrectangularbeam,390-399,428细长矩形梁中的overthesection,418-419截面上的staticallyindeterminate,10超静定Doubleshear,13双剪Ductilematerials,54,58-60,129,151塑性材料underplanestress,yieldcriteriafor467-469,504平面应力状态下的塑性材料屈服判据EEccentricaxialloading,42,224偏心轴线荷载generalcaseof,284-293,308—般状况下的inaplaneofsymmetry,270-278,307对称平面内的10
mi@seu.edu.cn 10 of the normal stress, 14–15正应力 of the shearing stress, 15–16切应力 of the shearing stresses in a beam, 386–387, 428弯曲梁中的切应力 of the ultimate strength of a material, 30–31, 44材料强度极限 Deviation, tangential, 594偏离,切向 Diagonal stays, 52–53斜拉索(斜拉桥中的拉索) Diagrams 图 free-body, 4, 17–18, 34–35, 42, 70–71受力简图 loading, 357荷载图 of shear, 319–328, 333–335, 342–343, 370–371剪力图 of shear and bending-moment, 319–328, 370–371,597–604, 623剪力图和弯矩图 of stress-strain relationships, 54, 56–61, 129, 186, 716应力应变图 Dilatation, 97, 132体应变 bulk modulus, 96–98, 132大块模量 Dimensionless quantities, 56无量纲量 Discontinuity, 350不连续 Displacement, relative, 69相对位移 Distributed loading, 316, 613分布荷载 Distribution of stresses 应力分布 in a narrow rectangular beam, 390–399, 428细长矩形梁中的 over the section, 418–419截面上的 statically indeterminate, 10超静定 Double shear, 13双剪 Ductile materials, 54, 58–60, 129, 151塑性材料 under plane stress, yield criteria for, 467–469, 504平面应力状态下的塑性材料屈服判据 E Eccentric axial loading, 42, 224偏心轴线荷载 general case of, 284–293, 308一般状况下的 in a plane of symmetry, 270–278, 307对称平面内的