Simple Hyperelastic BVPsmi@se.ed.cn
Simple Hyperelastic BVPs
Outline·Theoryof hyperelasticity(超弹理论回顾)·Incompressible spherically symmetric solids(不可压缩中心对称体)Pressurizedhollow sphere(压力球腔)>Governing equations(控制方程)》Boundarycondition(边界条件)>Displacementvs.Pressure(位移与压力函数关系)>Radial stress distribution(径向应力分布)>Hoopstressdistribution(箍筋应力/周向应力)2
Outline • Theory of hyperelasticity(超弹理论回顾) • Incompressible spherically symmetric solids(不可压缩 中心对称体) • Pressurized hollow sphere(压力球腔) 2 Governing equations(控制方程) Boundary condition(边界条件) Displacement vs. Pressure(位移与压力函数关系) Radial stress distribution(径向应力分布) Hoop stress distribution(箍筋应力/周向应力)
Summary of the Theory of HyperelasticityThe solid is stress free in its undeformed configurationTemperature changes during deformation are neglectedThe solid is incompressible.Re2RelDeformedOriginale3ConfigurationConfiguration3
• The solid is stress free in its undeformed configuration. • Temperature changes during deformation are neglected. • The solid is incompressible. Summary of the Theory of Hyperelasticity 3
Summary of the Theory of Hyperelasticity. Strain-displacement relations: B, = FiFjk, F, =O, +ujj Incompressibility: J = det[F] = 1BB.I, = BkkStress-strain relationdauauauauau1B. BB21nimimalal,3alal,alz00u+F, = 0.Equilibrium equationsayiTraction BCs on S: ,n, =tj Displacement BCs on Su: u, = u,4
Summary of the Theory of Hyperelasticity , , B F F F u ij ik jk ij ij i j J det 1 F • Strain-displacement relations: • Incompressibility: • Stress-strain relation • Traction BCs on St : • Displacement BCs on Su : 2 1 2 1 1 1 2 1 2 1 2 2 1 , , 2 2 2 . 3 kk ik ki ij ij ij im jm ij I B I I B B U U U U U I B I I B B p I I I I I • Equilibrium equations: 0. ij j i F y ij i j n t i i u u 4
Incompressible Spherically Symmetric Solidse3. Coordinates in undeformedeRconfiguration { R, Φ, @} Coordinates in deformedveoRconfiguration (r, P,0e20eiPoints only move radially, dueto spherical symmetryr= f(R)0=00= d.Position vectorin the undeformed solid:x=Re,Position vector in the deformed solid:y= re,=f(R)e. Displacement vector: u = y - x = re, - Re, = (f(R) - R)e5
• Coordinates in undeformed configuration Incompressible Spherically Symmetric Solids • Coordinates in deformed configuration R, , r, , • Points only move radially, due to spherical symmetry 5