第四章平面与立体和立体与立体相交 41平面与立体表面的交线 用平面截切立体,其截平面与立体表面的交线,称为截交线。截交线围成一个封闭的 多边形平面为截断面,在图上画出截交线的目的就是为在投影图上求出截断面的投影。图 4-1所示为平面与回转体表面相交的情况,其中(a)为触头的端部,(b)为接头的槽口和凸 图4-1平面与回转体表面相交 411平面与平面立体相交 平面与平面立体相交所产生的交线,实际上就是不完整的平面立体的棱线。下面以图 4-2(b)所示的带缺口的三棱锥为例来说明交线的画法。缺口是由一个水平面和一个正垂面 切割三棱锥而形成的。因水平截面平行于底面,所以它与前棱面的交线DE必平行于底边 AB,与后棱面的交线DF必平行于底边AC。正垂面分别与前、后棱面相交于直线GE、GF 由于两个截平面都垂直于正面,所以它们的交线EF一定是正垂线 作图过程如图4-2(a)所示。 图4-2带缺口的三棱锥及作图过程 因这两个截平面都垂直于正面,所以de'、d和ge'、gf都分别重合在它们的有积聚性 的正面投影上,e则位于它们的有积聚性的正面投影的交点处。在正投影中应标注出这些 交线的投影。 (1)由d在sa上作出d,由d作 della, aflac,再分别由e'、f在de、可上作出e、f, 由de和d、d作出d"e"、d",它们都重合在水平截面的积聚成直线的侧面投影上 (2)由g分别在s、s"a"上作出g、g",并分别与e、f和e"、连成ge、gf和g"e"、g" (3)连接e和f,因ef被三个棱面SB、SBC、SCA的水平投影所遮而不可见,故画成 虚线。e"重合在水平截面的积聚成直线的侧面投影上。 412平面与回转体表面相交 平面与回转体相交时,截交线是截平面与回转体表面的共有线。因此,求截交线的过程
第四章 平面与立体和立体与立体相交 4.1 平面与立体表面的交线 用平面截切立体,其截平面与立体表面的交线,称为截交线。截交线围成一个封闭的 多边形平面为截断面,在图上画出截交线的目的就是为在投影图上求出截断面的投影。图 4-1 所示为平面与回转体表面相交的情况,其中(a)为触头的端部,(b)为接头的槽口和凸 榫。 图 4-1 平面与回转体表面相交 4.1.1 平面与平面立体相交 平面与平面立体相交所产生的交线,实际上就是不完整的平面立体的棱线。下面以图 4-2(b)所示的带缺口的三棱锥为例来说明交线的画法。缺口是由一个水平面和一个正垂面 切割三棱锥而形成的。因水平截面平行于底面,所以它与前棱面的交线 DE 必平行于底边 AB,与后棱面的交线 DF 必平行于底边 AC。正垂面分别与前、后棱面相交于直线 GE、GF。 由于两个截平面都垂直于正面,所以它们的交线 EF 一定是正垂线。 作图过程如图 4-2(a)所示。 图 4-2 带缺口的三棱锥及作图过程 因这两个截平面都垂直于正面,所以 d′e′、d′f′和 g′e′、g′f′都分别重合在它们的有积聚性 的正面投影上,e′f′则位于它们的有积聚性的正面投影的交点处。在正投影中应标注出这些 交线的投影。 (1)由 d′在 sa 上作出 d,由 d 作 de//ab,df//ac,再分别由 e′、f′在 de、df 上作出 e、f, 由 d′e′和 d′f′、df 作出 d″e″、d″f″,它们都重合在水平截面的积聚成直线的侧面投影上。 (2)由 g′分别在 sa、s″a″上作出 g、g″,并分别与 e、f 和 e″、f″连成 ge、gf 和 g″e″、g″f″。 (3)连接 e 和 f,因 ef 被三个棱面 SAB、SBC、SCA 的水平投影所遮而不可见,故画成 虚线。e″f″重合在水平截面的积聚成直线的侧面投影上。 4.1.2 平面与回转体表面相交 平面与回转体相交时,截交线是截平面与回转体表面的共有线。因此,求截交线的过程
可归结为求出截平面和回转体表面的若干共有点,然后依次光滑地连接成平面曲线。为了确 切地表示截交线,必须求出其上的某些特殊点,如回转体转向线上的点以及截交线的最高点、 最底点、最左点、最右点、最前点和最后点等。 (1)正圆柱的截交线 根据截切平面与圆柱的相对位置不同,截交线有三种不同情况,见表4-1。 表4-1平面与圆柱的交线 截切平面位置 垂直于轴线 平行于轴线 倾斜于轴线 平行二直线(连同与上下 截交线 椭圆 底面的交构成一矩形) 图4-3所示为圆柱面被倾斜于轴线的平面截切,截交线是椭圆。该椭圆的正面投影重影 为一条直线:水平投影重影于圆柱面的投影上;而侧面投影,在一般情况下仍是椭圆(当 a=45°时为圆),但不反映实形。作图时,可按在圆柱面上取点的方法,先找出椭圆长、短轴 的端点(A、B、C、D),然后再作一些中间点(如点E、F),并把它们光滑地连接起来即 可。作图过程见图43。 图4-3平面斜截圆柱 图44是圆柱体被水平面和侧平面截去一角,在圆柱面上形成两部分截交线。水平面与 圆柱的轴线垂直,截交线应是一个圆。由于水平面没有把圆柱全部截掉,所以是个弓形,它 在俯视图上的投影反映实形,其宽度为A。水平面在左视图上的投影积聚成一条直线段,其 宽度也为A。侧平面与圆柱面的轴线平行,截断面为一矩形,其水平投影积聚成宽度为A的 直线段,侧面投影反映实形,即宽度为A的矩形 图4-4 图45是四棱柱和圆柱相交,可分析为棱柱的四个平面与圆柱相交。四棱柱的两个平面 与圆柱轴线平行,另两个平面与轴线垂直。四段截交线分别为两段直线和两段圆孤,四段线 连起来好似一块瓦片轮廓。请读者分析这四段线在三个视图上的投影。应当注意,四棱柱和 圆柱体本是一个物体,因而中间一段圆柱的轮廓素线是没有的。 图4-5四棱柱与圆柱相交 图4-6所示带方孔的圆柱也可分析为四个平面与圆柱相交。还可以设想把图45中的四
可归结为求出截平面和回转体表面的若干共有点,然后依次光滑地连接成平面曲线。为了确 切地表示截交线,必须求出其上的某些特殊点,如回转体转向线上的点以及截交线的最高点、 最底点、最左点、最右点、最前点和最后点等。 (1)正圆柱的截交线 根据截切平面与圆柱的相对位置不同,截交线有三种不同情况,见表 4-1。 表 4-1 平面与圆柱的交线 截切平面位置 垂直于轴线 平行于轴线 倾斜于轴线 轴 测 图 投 影 图 截交线 圆 平行二直线(连同与上下 底面的交构成一矩形) 椭圆 图 4-3 所示为圆柱面被倾斜于轴线的平面截切,截交线是椭圆。该椭圆的正面投影重影 为一条直线;水平投影重影于圆柱面的投影上;而侧面投影,在一般情况下仍是椭圆(当 a=45°时为圆),但不反映实形。作图时,可按在圆柱面上取点的方法,先找出椭圆长、短轴 的端点(A、B、C、D),然后再作一些中间点(如点 E、F),并把它们光滑地连接起来即 可。作图过程见图 4-3。 图 4-3 平面斜截圆柱 图 4-4 是圆柱体被水平面和侧平面截去一角,在圆柱面上形成两部分截交线。水平面与 圆柱的轴线垂直,截交线应是一个圆。由于水平面没有把圆柱全部截掉,所以是个弓形,它 在俯视图上的投影反映实形,其宽度为 A。水平面在左视图上的投影积聚成一条直线段,其 宽度也为 A。侧平面与圆柱面的轴线平行,截断面为一矩形,其水平投影积聚成宽度为 A 的 直线段,侧面投影反映实形,即宽度为 A 的矩形。 图 4-4 图 4-5 是四棱柱和圆柱相交,可分析为棱柱的四个平面与圆柱相交。四棱柱的两个平面 与圆柱轴线平行,另两个平面与轴线垂直。四段截交线分别为两段直线和两段圆孤,四段线 连起来好似一块瓦片轮廓。请读者分析这四段线在三个视图上的投影。应当注意,四棱柱和 圆柱体本是一个物体,因而中间一段圆柱的轮廓素线是没有的。 图 4-5 四棱柱与圆柱相交 图 4-6 所示带方孔的圆柱也可分析为四个平面与圆柱相交。还可以设想把图 4-5 中的四
棱柱从圆柱上移去而形成方孔,两者的投影情况是一样的。构成方孔的四个平面中,两个为 矩形,另两个为前后边是直线而上下边是圆弧的鼓形。在主视图上,矩形反映实形,鼓形积 聚成直线。鼓形的投影除两端圆弧部分前方边缘可见外,其余均不可见,故用虚线画出。在 左视图上,矩形积聚成直线段,鼓形反映实形,但全部不可见,皆用虚线画出 图4-6带方孔的圆柱 例4.1图47(a)表示套筒上部有一切口,这个切口可看作是由三个平面截切圆筒而 形成的,为便于分析,可将圆筒简化,如图47(b)所示。现已知切口的正面投影,试作 出其水平投影和侧面投影 解:切口是由一个水平面和两个侧平面截切圆柱体形成的。在正面投影中,三个平面均 积聚为直线:在水平投影中,两个侧平面积聚为直线,水平面为带圆弧的平面图形,且反映 实形:在侧面投影中,两个侧平面为矩形且反映实形,水平面积聚为直线(被圆柱面遮住的 段不可见,应画成虚线)。应当指出,在侧面投影中,圆柱面上侧面的轮廓素线被切去的 部分不应画出。有切口的空心圆柱,其投影如图47(c)所示 图4-7套筒切口部分的截交线 (2)正圆锥的截交线 当平面与圆锥相交时,由于平面对圆锥的相对位置不同,其截交线可以是圆、椭圆、抛 物线或双曲线,这四种曲线总称为圆锥曲线:当截切平面通过圆锥顶点时,其截交线为过锥 顶的两直线。参看表42 表4-2平面与圆锥的交线 截面 位置垂直于轴线与所有素线相交平行于一条素线平行于轴线 过锥顶 相交二直线 (连同与锥底面 圆 椭圆 抛物线 双曲线 的交线为一三角 关于圆和椭圆的投影特性前面己经讲过,这里不再赘述。而抛物线的投影一般仍为抛物 线,双曲线的投影一般仍为双曲线 例42在图48(a)所示的零件中,箭头所指部位为圆锥上的缺口,简化后如图48 (b)所示,已知切口的正面投影求其它两个投影
棱柱从圆柱上移去而形成方孔,两者的投影情况是一样的。构成方孔的四个平面中,两个为 矩形,另两个为前后边是直线而上下边是圆弧的鼓形。在主视图上,矩形反映实形,鼓形积 聚成直线。鼓形的投影除两端圆弧部分前方边缘可见外,其余均不可见,故用虚线画出。在 左视图上,矩形积聚成直线段,鼓形反映实形,但全部不可见,皆用虚线画出。 图 4-6 带方孔的圆柱 例 4.1 图 4-7(a)表示套筒上部有一切口,这个切口可看作是由三个平面截切圆筒而 形成的,为便于分析,可将圆筒简化,如图 4-7(b)所示。现已知切口的正面投影,试作 出其水平投影和侧面投影。 解:切口是由一个水平面和两个侧平面截切圆柱体形成的。在正面投影中,三个平面均 积聚为直线;在水平投影中,两个侧平面积聚为直线,水平面为带圆弧的平面图形,且反映 实形;在侧面投影中,两个侧平面为矩形且反映实形,水平面积聚为直线(被圆柱面遮住的 一段不可见,应画成虚线)。应当指出,在侧面投影中,圆柱面上侧面的轮廓素线被切去的 部分不应画出。有切口的空心圆柱,其投影如图 4-7(c)所示。 图 4-7 套筒切口部分的截交线 (2)正圆锥的截交线 当平面与圆锥相交时,由于平面对圆锥的相对位置不同,其截交线可以是圆、椭圆、抛 物线或双曲线,这四种曲线总称为圆锥曲线;当截切平面通过圆锥顶点时,其截交线为过锥 顶的两直线。参看表 4-2。 表 4-2 平面与圆锥的交线 截 面 位置 垂直于轴线 与所有素线相交 平行于一条素线 平行于轴线 过锥顶 截 交 线 圆 椭圆 抛物线 双曲线 相交二直线 (连同与锥底面 的交线为一三角 形) 轴 测 图 投 影 图 关于圆和椭圆的投影特性前面已经讲过,这里不再赘述。而抛物线的投影一般仍为抛物 线,双曲线的投影一般仍为双曲线。 例 4.2 在图 4-8(a)所示的零件中,箭头所指部位为圆锥上的缺口,简化后如图 4-8 (b)所示,已知切口的正面投影求其它两个投影
图4-8圆锥切口的投影 解:切口可以看作是由一个水平面和两个侧平面截切圆锥而成。水平面截切圆锥得一带 有圆弧的平面图形(截交线是两段圆弧),两个侧平面截切圆锥各得一双曲线 关于双曲线的作图方法如图48(c)所示,截交线的正面投影和水平投影都重影成一条 直线,仅需求其侧面投影。作图时,首先找特殊点,离锥顶最近的点A为最高点,最远的B、 C为最低点,已知点A的正面投影a在轮廓素线上,可利用面上取点的方法,在轮廓素线的 相应投影上,求得a,a",最低点B、C在底圆上,已知b、c和b、c就可作出侧面投影。 在最高点和最低点之间再找一些中间点,例如作一辅助线(或辅助面)求出D、E两点的三 个投影,依次连接各点即可 如图48(b)所示,切口的正面投影积聚成直线;在水平投影中,两条双曲线均重影 为直线,带圆弧的平面图形反映实形;切口的侧面投影为两条双曲线,它们反映实形且重合, 带圆弧的平面图形积聚成一直线,其中被圆锥表面遮住的一段因不可见,画成虚线,而圆锥 的轮廓素线被切去的部分,不应画出。 (3)圆球体的截交线 平面与圆球相交,不论平面与圆球的相对位置如何,其截交线都是圆。但由于截切平面 对投影面的相对位置不同,所得截交线(圆)的投影不同。 在图4-9中,圆球被水平面截切,所得截交线为水平圆,该圆的正面投影和侧面投影重 影成一条直线(如ab'、c"d"),该直线的长度等于所截水平圆的直径,其水平投影反映该圆 实形。截切平面距球心愈近(h愈小),圆的直径(d)愈大;h愈大,其直径愈小。实例见 图4-10所示螺钉头部圆球切口的投影。 如果截切平面为投影面的垂直面,则截交线的两个投影是椭圆 图4-9水平面截圆球 图4-10圆球切口的投影 (4)组合回转体的截交线 组合回转体可看成由若干几何体所组成。求平面与组合回转体的截交线就是分别求出平 面与各个几何体的截交线 例43图411所示的连杆头,为组合回转体被平行于轴线的两对称平面(正平面)切 去前、后部分而形成的,试求它们的截交线 图4-11连杆头截交线的投影 解:①分析几何体连杆的头部由圆球、圆锥及圆柱所组成。圆球和圆锥的分界面为
图 4-8 圆锥切口的投影 解:切口可以看作是由一个水平面和两个侧平面截切圆锥而成。水平面截切圆锥得一带 有圆弧的平面图形(截交线是两段圆弧),两个侧平面截切圆锥各得一双曲线。 关于双曲线的作图方法如图 4-8(c)所示,截交线的正面投影和水平投影都重影成一条 直线,仅需求其侧面投影。作图时,首先找特殊点,离锥顶最近的点 A 为最高点,最远的 B、 C 为最低点,已知点 A 的正面投影 a′在轮廓素线上,可利用面上取点的方法,在轮廓素线的 相应投影上,求得 a,a′′,最低点 B、C 在底圆上,已知 b′、c′和 b、c 就可作出侧面投影。 在最高点和最低点之间再找一些中间点,例如作一辅助线(或辅助面)求出 D、E 两点的三 个投影,依次连接各点即可。 如图 4-8(b)所示,切口的正面投影积聚成直线;在水平投影中,两条双曲线均重影 为直线,带圆弧的平面图形反映实形;切口的侧面投影为两条双曲线,它们反映实形且重合, 带圆弧的平面图形积聚成一直线,其中被圆锥表面遮住的一段因不可见,画成虚线,而圆锥 的轮廓素线被切去的部分,不应画出。 (3)圆球体的截交线 平面与圆球相交,不论平面与圆球的相对位置如何,其截交线都是圆。但由于截切平面 对投影面的相对位置不同,所得截交线(圆)的投影不同。 在图 4-9 中,圆球被水平面截切,所得截交线为水平圆,该圆的正面投影和侧面投影重 影成一条直线(如 a′b′、c″d″),该直线的长度等于所截水平圆的直径,其水平投影反映该圆 实形。截切平面距球心愈近(h 愈小),圆的直径(d)愈大;h 愈大,其直径愈小。实例见 图 4-10 所示螺钉头部圆球切口的投影。 如果截切平面为投影面的垂直面,则截交线的两个投影是椭圆。 图 4-9 水平面截圆球 图 4-10 圆球切口的投影 (4)组合回转体的截交线 组合回转体可看成由若干几何体所组成。求平面与组合回转体的截交线就是分别求出平 面与各个几何体的截交线。 例 4.3 图 4-11 所示的连杆头,为组合回转体被平行于轴线的两对称平面(正平面)切 去前、后部分而形成的,试求它们的截交线。 图 4-11 连杆头截交线的投影 解:① 分析几何体 连杆的头部由圆球、圆锥及圆柱所组成。圆球和圆锥的分界面为
经过切点A的侧平面(圆)。 从水平投影可以看出,两截切平面的水平投影和侧面投影均积聚为直线,故只需求作截 交线的正面投影 ②求截交线截切平面(正平面)与圆球的截交线为半径等于R的圆。该圆的正面 投影反映实形,但只能画到分界面上的点1′为止。截切平面与圆锥的截交线为一双曲线 可从有积聚性的水平投影上得到平面曲线的最右点Ⅱ(2、2′、2"),再在点Ⅰ和点Ⅱ之间 求出若干个一般点,如图4-11所示,作辅助的侧平面P,求出点Ⅲ(3、3′、3″)。然后 依次光滑地连接这些点的正面投影即为所求。由于平面与圆柱无截交线,因而全部截交线是 由圆弧和双曲线组成的封闭曲线。 42两回转体的表面相交 在一些机件上,常常会见到两个立体表面的交线,最常见的是两回转体表面的交线。两 相交立体的表面交线,称为相贯线。把这两个立体看作一个整体,称为相贯体。例如,在图 4-12所示的三通管上,就有两个圆柱的相贯线。在一般情况下,两曲面立体的相贯线是封 闭的空间曲线:在特殊情况下,可能是不封闭的,也可能是平面曲线或直线 图4-12两曲面立体的相贯线 两曲面立体的相贯线是两曲面立体表面共有点集合而成的共有线,相贯线上的点是两曲 面立体表面的共有点 求作两曲面立体的相贯线的投影时,一般是先作出两曲面立体表面上的一些共有点的投 影,再连成相贯线的投影。通常可用辅助面来求作这些点,也就是求出辅助面与这两个立体 表面的三面共点,即为相贯线上的点。辅助面可用平面、球面等。当两个立体中有一个立体 表面的投影具有积聚性时,可以用在曲面立体表面上取点的方法作出这些点的投影。在求作 相贯线上的这些点时,与求作曲面立体的截交线一样,应在可能和方便的情况下,适当地作 出一些在相贯线上的特殊点,即能够确定相贯线的投影范围和变化趋势的点,如相贯体的曲 面投影的转向轮廓线上的点,以及最高、最低、最左、最右、最前、最后点等,然后按需要 再求作相贯线上一些其它的一般点,从而准确地连得相贯线的投影,并表明可见性。只有一 段相贯线同时位于两个立体的可见表面上时,这段相贯线的投影才是可见的;否则,就不可 见。 本节用表面取点法和辅助平面法阐述了一些常见的两回转体的相贯线画法 、表面取点法 两回转体相交,如果其中有一个是轴线垂直于投影面的圆柱,则相贯线在该投影面上的 投影,就重合在圆柱面的有积聚性的投影上。于是求圆柱和另一回转体的相贯线投影的问题, 可以看作是已知另一回转体表面上的线的一个投影求其它投影的问题,也就可以在相贯线上 取一些点,按已知曲面立体表面上的点的一个投影,求其它投影的方法,即表面取点法,作 出相贯线的投影 如图4-13所示,求作两正交圆柱的相贯线的投影 两圆柱的轴线垂直相交,有共同的前后对称面和左右对称面,小圆柱全部穿进大圆柱 因此,相贯线是一条封闭的空间曲线,且前后对称和左右对称。 由于小圆柱面的水平投影积聚为圆,相贯线的水平投影便重合在其上;同理,大圆柱面 的侧面投影积聚为圆,相贯线的侧面投影也就重合在小圆柱穿进处的一段圆弧上,且左半和
经过切点 A 的侧平面(圆)。 从水平投影可以看出,两截切平面的水平投影和侧面投影均积聚为直线,故只需求作截 交线的正面投影。 ② 求截交线 截切平面(正平面)与圆球的截交线为半径等于 R 的圆。该圆的正面 投影反映实形,但只能画到分界面上的点 1′为止。截切平面与圆锥的截交线为一双曲线。 可从有积聚性的水平投影上得到平面曲线的最右点Ⅱ(2、2′、2″),再在点Ⅰ和点Ⅱ之间 求出若干个一般点,如图 4-11 所示,作辅助的侧平面 P,求出点Ⅲ(3、3′、3″)。然后 依次光滑地连接这些点的正面投影即为所求。由于平面与圆柱无截交线,因而全部截交线是 由圆弧和双曲线组成的封闭曲线。 4.2 两回转体的表面相交 在一些机件上,常常会见到两个立体表面的交线,最常见的是两回转体表面的交线。两 相交立体的表面交线,称为相贯线。把这两个立体看作一个整体,称为相贯体。例如,在图 4-12 所示的三通管上,就有两个圆柱的相贯线。在一般情况下,两曲面立体的相贯线是封 闭的空间曲线;在特殊情况下,可能是不封闭的,也可能是平面曲线或直线。 图 4-12 两曲面立体的相贯线 两曲面立体的相贯线是两曲面立体表面共有点集合而成的共有线,相贯线上的点是两曲 面立体表面的共有点。 求作两曲面立体的相贯线的投影时,一般是先作出两曲面立体表面上的一些共有点的投 影,再连成相贯线的投影。通常可用辅助面来求作这些点,也就是求出辅助面与这两个立体 表面的三面共点,即为相贯线上的点。辅助面可用平面、球面等。当两个立体中有一个立体 表面的投影具有积聚性时,可以用在曲面立体表面上取点的方法作出这些点的投影。在求作 相贯线上的这些点时,与求作曲面立体的截交线一样,应在可能和方便的情况下,适当地作 出一些在相贯线上的特殊点,即能够确定相贯线的投影范围和变化趋势的点,如相贯体的曲 面投影的转向轮廓线上的点,以及最高、最低、最左、最右、最前、最后点等,然后按需要 再求作相贯线上一些其它的一般点,从而准确地连得相贯线的投影,并表明可见性。只有一 段相贯线同时位于两个立体的可见表面上时,这段相贯线的投影才是可见的;否则,就不可 见。 本节用表面取点法和辅助平面法阐述了一些常见的两回转体的相贯线画法。 一、表面取点法 两回转体相交,如果其中有一个是轴线垂直于投影面的圆柱,则相贯线在该投影面上的 投影,就重合在圆柱面的有积聚性的投影上。于是求圆柱和另一回转体的相贯线投影的问题, 可以看作是已知另一回转体表面上的线的一个投影求其它投影的问题,也就可以在相贯线上 取一些点,按已知曲面立体表面上的点的一个投影,求其它投影的方法,即表面取点法,作 出相贯线的投影。 如图 4-13 所示,求作两正交圆柱的相贯线的投影。 两圆柱的轴线垂直相交,有共同的前后对称面和左右对称面,小圆柱全部穿进大圆柱。 因此,相贯线是一条封闭的空间曲线,且前后对称和左右对称。 由于小圆柱面的水平投影积聚为圆,相贯线的水平投影便重合在其上;同理,大圆柱面 的侧面投影积聚为圆,相贯线的侧面投影也就重合在小圆柱穿进处的一段圆弧上,且左半和