建立方程: M1M2=√(R+R2+p+P2)2+(+q2)2 M, M2=R+R2+D=V(xm2-xmi)2+(m2-ym) (R+R2+1+P2)2+(a1+q2)2=(R+R2+D)2 6 24R 2R1240R A 2 24R 2R,240R 设A=kA 用牛顿求根法可解出A1,A2
2 2 1 2 1 2 1 2 2 1 ( ) ( ) m m m m M M = R + R + D = x − x + y − y 2 1 2 2 1 2 2 1 2 1 2 (R + R + p + p ) +(q + q ) = (R + R + D) 3 1 4 1 1 24R A p = 5 1 6 1 1 2 1 1 2 240 R A R A q = − 3 2 4 2 2 24R A p = 5 2 6 2 2 2 2 2 2 240R A R A q = − 1 2 设A = kA 用牛顿求根法可解出A1,A2 建立方程: 2 1 2 2 1 2 1 2 1 2 M M = (R + R + p + p ) + (q + q )
(3)两同向曲线连接(卵型) 两圆心间距 M,M2=R-R2+D=(m2 -xm)2+(ym2-yml) AMM2=V(R-R2+P1-2)2+(q2-91) R R1+p1-R2p2 D q2-q 建立方程: (R-R2+p1-p2)2+(q2-q1)2=(R1-R2+D)2 用牛顿求根法可解出A。 - pr
(3)两同向曲线连接(卵型) 两圆心间距: 2 2 1 2 1 2 1 2 1 2 M M = (R − R + p − p ) + (q − q ) q2 -q1 R1+p1 -R2 -p2 2 2 1 2 1 2 1 2 2 1 M M = R − R + D = (x m − x m ) + (y m − y m ) 建立方程: 2 1 2 2 2 1 2 1 2 1 2 (R − R + p − p ) +(q −q ) = (R − R + D) 用牛顿求根法可解出A