繼合变形( Combined Deformation) _心」 3.危险截面的确定( Determine the danger cross section) 作内力图 轴力( axial force) F lh 2 弯矩( bending moment) max 图 所以跨中截面是杆的危险截面 Fil4 M图
(Combined Deformation) 轴力(axial force) 所以跨中截面是杆的危险截面 FN = F2 F1 F2 F2 l/2 l/2 4 1 max F l M = 3.危险截面的确定(Determine the danger cross section) 作内力图 弯矩(bending moment) x x FN图 M图 F2 F1 l/4
繼合变形( Combined Deformation) 4计算危险点的应力( Calculating stress of the danger point) max A 2 拉伸正应力 O=-2 Fl 最大弯曲正应力 max max W 杆危险截面下边缘各点处上的拉应力为 Otmax =o t max A 4w
(Combined Deformation) 拉伸正应力 最大弯曲正应力 A F2 = W F l W M 4 max 1 max = = 杆危险截面下边缘各点处上的拉应力为 W F l A F 4 2 1 tmax = + max = + 4.计算危险点的应力(Calculating stress of the danger point) F1 F2 F2 l/2 l/2 A F2 = - W Mmax =
繼合变形( Combined Deformation) 五、强度条件( Strength condition) 由于危险点处的应力状态仍为单向应力状态,故其强度条件 为 Omax so 当材料的许用拉应力和许用压应力不相等时,应分别建立 杆件的抗拉和抗压强度条件. t max ≤|Gl max
(Combined Deformation) 当材料的许用拉应力和许用压应力不相等时,应分别建立 杆件的抗拉和抗压强度条件. 五、强度条件(Strength condition) 由于危险点处的应力状态仍为单向应力状态,故其强度条件 为: max [ ] [ ] tmax t [ ] cmax c
繼合变形( Combined Deformation) 例题1悬臂吊车如图所示,横梁用20a工字钢制成其抗弯刚度W 237cm3,横截面面积A=35.5cm2,总荷载F=34kN,横梁材料的许 用应力为d=125MPa校核横梁AB的强度 解:(1)分析AB的受力情况 ∑M4=0Fsin30×2.4-12F=0 F NAB = 30 B ∑ F=0FA=0.866F 1.2m FI 1.2m ∑F=0FR=0.5F R AB杆为平面弯曲与轴向压缩组合变形 NAB 中间截面为危险截面最大压应力fR4xA 309B 发生在该截面的上边缘 D F
(Combined Deformation) 例题1 悬臂吊车如图所示,横梁用20a工字钢制成.其抗弯刚度Wz = 237cm3 ,横截面面积A=35.5cm2 ,总荷载F= 34kN,横梁材料的许 用应力为[]=125MPa.校核横梁AB的强度. F A C D 1.2m 1.2m 30° B A B D F FRAy FRAx Fy Fx FNAB 30° 解:(1) 分析AB的受力情况 = 0 N sin30 2.4 −1.2 = 0 MA F AB F FNAB = F F F F F F F y Ay x Ax 0 0.5 0 0.866 R R = = = = AB杆为平面弯曲与轴向压缩组合变形 中间截面为危险截面.最大压应力 发生在该截面的上边缘
繼合变形( Combined Deformation) (2)压缩正应力 RAx 0.866F 30 (3)最大弯曲正应力 12mF1.2m 1.2F =+ RAy 0.6F RAy max NAB RAx a 30 B (4)危险点的应力 D F 0.866F0.6F cmax =9437MPa<|
(Combined Deformation) (2) 压缩正应力 (3) 最大弯曲正应力 A F A FRAx 0.866 = − = − z z Ay W F W 1.2FR 0.6 max = = 94.37MPa [ ] 0.866 0.6 cmax = + = Wz F A F (4)危险点的应力 F A C D 1.2m 1.2m 30° B A B D F FRAy FRAx Fy Fx FNAB 30°