例1,利用凯莱递推法求下图生成树的棵数。 共8棵生成树
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 6 例1,利用凯莱递推法求下图生成树的棵数。 共8棵生成树
凯莱公式的缺点之一是计算量很大,其次是不能具 体指出每棵生成树。 2、关联矩阵计数法 定义3:n×m矩阵的一个阶数为mim{n,m}的子方阵, 称为它的一个主子阵;主子阵的行列式称为主子行列式。 显然,当n<m时,n×m矩阵Cm个主子阵。 定理3设Am是连通图G的基本关联矩阵的主子阵,则 Am非奇异的充分必要条件是相应于Am的列的那些边构 成G的一棵生成树。 证明:必要性
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 7 凯莱公式的缺点之一是计算量很大,其次是不能具 体指出每棵生成树。 2、关联矩阵计数法 定义3 :n×m矩阵的一个阶数为min{n, m}的子方阵, 称为它的一个主子阵;主子阵的行列式称为主子行列式。 显然,当n<m时,n×m矩阵 Cm n 个主子阵。 定理3 设Am是连通图G的基本关联矩阵的主子阵,则 Am非奇异的充分必要条件是相应于Am的列的那些边构 成G的一棵生成树。 证明:必要性
设Am是A的一个非奇异主子阵,并设与A的列相对 应的边构成G的子图Gm 由于Am有n-l行,故Gm应该有n个顶点(包括参考点); 又Am有n-1列,所以Gm有n-1条边。而Am非奇异,故Am的 秩为n-1,即G连通。这说明Gm是n个点,n-1条边的连通 图,所以,它是树。 充分性 如果A的列对应的边作成G的一棵生成树,因树是连通 的,所以,它对应的基本关联矩阵Am非奇异。 该定理给出了求连通图G的所有生成树的方法: (1)写出G的关联矩阵,进一步写出基本关联矩阵, 记住参考点;
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 8 设Am是Af的一个非奇异主子阵,并设与Am的列相对 应的边构成G的子图Gm. 由于Am有n-1行,故Gm应该有n个顶点(包括参考点); 又Am有n-1列,所以Gm有n-1条边。而Am非奇异,故Am的 秩为n-1 ,即Gm连通。这说明Gm是n个点,n-1条边的连通 图,所以,它是树。 充分性 如果Am的列对应的边作成G的一棵生成树,因树是连通 的,所以,它对应的基本关联矩阵Am非奇异。 该定理给出了求连通图G的所有生成树的方法: (1) 写出G的关联矩阵,进一步写出基本关联矩阵, 记住参考点;
(2)找出基本关联矩阵的非奇异主子阵,对每个这样 的主子阵,画出相应的生成树。 例2,画出下图G的所有不同的生成树。 解:取4为参考点,G的基本关联矩阵为: 0
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 9 (2) 找出基本关联矩阵的非奇异主子阵,对每个这样 的主子阵,画出相应的生成树。 例2,画出下图G的所有不同的生成树。 1 2 3 4 a b c d e G 解:取4为参考点,G的基本关联矩阵为: 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 Af = a b c d e 1 2 3
共有10个主子阵,非奇异主子阵8个,它们是: 1 的 10
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 10 共有10个主子阵,非奇异主子阵8个,它们是: 1 2 3 4 a b d 1 1 1 0 0 1 1 0 0 1 A = a b d 1 2 3 2 1 1 0 0 1 0 0 0 1 A = a b e 1 2 3 1 2 3 4 a b e