其中 ∑(x-x)2 是x的均方MSx,它是x的 方差a2的无偏估计量; 2是y的均方Ms,它是y的 n-1 方差∞2的无偏估计量;
其中 是x的均方MSx,它是x的 方差 的无偏估计量; 是y的均方MSy,它是y的 方差 的无偏估计量; 1 ( ) 2 − − n x x 2 x 1 ( ) 2 − − n y y 2 x
∑ (x-x)(y-y) 称为x与y的平均的离均差 的乘积和,简称均积,记为MPxy,即 MP ∑(x-xy-y ∑-②x∑ (10-2)
1 ( )( ) − − − n x x y y 称为x与y的平均的离均差 的乘积和,简称均积,记为MPxy,即 1 ( )( ) − − − = n x x y y MPxy 1 ( )( ) − − = n n x y x y (10-2)
与均积相应的总体参数叫协方差 ( coVariance),记为Cov(xy)或。。统 计学证明了,均积MPX是总体协方差cOv(x,y) 的无偏估计量,即 EMPX= COV(X,y) 于是,样本相关系数r可用均方MSx、MSy 均积MPx表示为 MP (10-3) MSMS 上一张下一张主页退出
与 均 积 相 应 的 总 体参 数 叫 协 方 差 (covariance),记为COV(x,y)或 。统 计学证明了,均积MPxy是总体协方差COV(x,y) 的无偏估计量,即 EMPxy= COV(x,y)。 于是,样本相关系数r可用均方MSx、MSy, 均积MPxy表示为: (10-3) xy x y xy MS MS MP r = 上一张 下一张 主 页 退 出
相应的总体相关系数可用x与y的总体标 准差、,总体协方差cov(xy)或表 示如下 COV(x, y) Xy (10-4) Oxy Oxy
相应的总体相关系数ρ可用x与y的总体标 准差 、 ,总体协方差COV(x,y)或 表 示如下: (10-4) x y xy x y xy x y COV x y = = ( , )
均积与均方具有相似的形式,也有相似的 性质。在方差分析中,一个变量的总平方和与 自由度可按变异来源进行剖分,从而求得相应 的均方。统计学已证明:两个变量的总乘积和 与自由度也可按变异来源进行剖分而获得相应 的均积。这种把两个变量的总乘积和与自由度 按变异来源进行剖分并获得获得相应均积的方 法亦称为协方差分析。 上一张下一张主页退出
均积与均方具有相似的形式 , 也有相似的 性质。在方差分析中,一个变量的总平方和与 自由度可按变异来源进行剖分,从而求得相应 的均方。统计学已证明:两个变量的总乘积和 与自由度也可按变异来源进行剖分而获得相应 的均积。这种把两个变量的总乘积和与自由度 按变异来源进行剖分并获得获得相应均积的方 法亦称为协方差分析。 上一张 下一张 主 页 退 出