第二盒:题逻辑的等值和推理资算21值定理22.1基本的等值公式222若干開的等值公式223置换规题2.4联结词 (4)分配律P→(Q→R)=(P→Q)→(P→R) PH(QHR)丰(PQ)H(PHR) (5)等幂律(恒等律)PVP=P PAP=P P→P=T P←→P=T (6)吸收律PV(P∧Q)=P PA(PVO=P (7)摩根律(PVQ)=P∧Q HPAO=-PV-0 -P→=PA一Q 刘胜利(上海交大CS实验室) 离学第二章:避逻辑的等值和推理演算 6/66
✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 2.1 ✤❾➼♥ 2.2.1 ➘✢✛✤❾ú➟ 2.2.2 ❡❩⑦❫✛✤❾ú➟ 2.2.3 ➌❺✺❑ 2.4 é✭❝✛✑✗✽ 2.4.2 é✭❝✛✑✗✽ 2.5 éó➟ 2.6 ❽➟❺❒❽➟ 2.6.2 ❒❽➟↔❒Û✒❽➟Ú❒Ü✒❽➟↕ ✹➀➅❺❒Ü✒❽➟ ❒❽➟✛❆❫ ❒Û✒❽➟Ú❒Ü✒❽➟♠✛❷♣❂❺ í♥✴➟ ➘✢✛í♥ú➟ í♥ü➂ ✽✭í♥④ ❾➆ Logic Puzzles (4)➞✛➷ P → (Q → R) = (P → Q) → (P → R) P ↔ (Q ↔ R) , (P ↔ Q) ↔ (P ↔ R) (5)✤➌➷(ð✤➷) P ∨ P = P P ∧ P = P P → P = T P ↔ P = T (6)á➶➷ P ∨ (P ∧ Q) = P P ∧ (P ∨ Q) = P (7)✤❾➷ ¬(P ∨ Q) = ¬P ∧ ¬Q ¬(P ∧ Q) = ¬P ∨ ¬Q ¬(P → Q) = P ∧ ¬Q ✹➅⑤ (þ➦✂➀-CIS➣✟➾) ❧Ñê➷✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 6 / 66
第二盒:题逻辑的竿值和推理资算21等值定理22.1基本的等值公式222若干常用的等值公式223置换规则2.4联结词6 (4)分配律P→(Q→R)=(P→Q)→(P→R) P→(Q+R)丰(PQ)H(PHR) (5)等幂律(恒等律)PVP=P PAP=P P→P=T P←→P=T (6)吸收律PV(P∧Q)=P PA(PVO=P (7)摩根律(PVQ)=P∧Q -(PAO)=-PV-0 刘胜利(上海交大CS实验室) 离学第二章: 题逻辑的等值和推理演算 6166
✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 2.1 ✤❾➼♥ 2.2.1 ➘✢✛✤❾ú➟ 2.2.2 ❡❩⑦❫✛✤❾ú➟ 2.2.3 ➌❺✺❑ 2.4 é✭❝✛✑✗✽ 2.4.2 é✭❝✛✑✗✽ 2.5 éó➟ 2.6 ❽➟❺❒❽➟ 2.6.2 ❒❽➟↔❒Û✒❽➟Ú❒Ü✒❽➟↕ ✹➀➅❺❒Ü✒❽➟ ❒❽➟✛❆❫ ❒Û✒❽➟Ú❒Ü✒❽➟♠✛❷♣❂❺ í♥✴➟ ➘✢✛í♥ú➟ í♥ü➂ ✽✭í♥④ ❾➆ Logic Puzzles (4)➞✛➷ P → (Q → R) = (P → Q) → (P → R) P ↔ (Q ↔ R) , (P ↔ Q) ↔ (P ↔ R) (5)✤➌➷(ð✤➷) P ∨ P = P P ∧ P = P P → P = T P ↔ P = T (6)á➶➷ P ∨ (P ∧ Q) = P P ∧ (P ∨ Q) = P (7)✤❾➷ ¬(P ∨ Q) = ¬P ∧ ¬Q ¬(P ∧ Q) = ¬P ∨ ¬Q ¬(P → Q) = P ∧ ¬Q ✹➅⑤ (þ➦✂➀-CIS➣✟➾) ❧Ñê➷✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 6 / 66
第二盒:题逻辑的竿值和推理资算21等值定理22.1基本的等值公式222若干常用的等值公式223置换规则2.4联结词6 (4)分配律P→(Q→R)=(P→Q)→(P→R) PH(QHR)丰(PQ)H(PHR) (5)等幂律(恒等律)PVP=P PAP=P P→P=T P←P=T (6)吸收律PV(P∧Q)=P PA(PVO=P (7)摩根律(PVQ)=P∧Q (P∧2)=PVQ (P→Q)=P∧Q 刘胜利(上海交大-CS实验室) 鹰数数学第二章:避逻辑的等值和推理演算 6166
✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 2.1 ✤❾➼♥ 2.2.1 ➘✢✛✤❾ú➟ 2.2.2 ❡❩⑦❫✛✤❾ú➟ 2.2.3 ➌❺✺❑ 2.4 é✭❝✛✑✗✽ 2.4.2 é✭❝✛✑✗✽ 2.5 éó➟ 2.6 ❽➟❺❒❽➟ 2.6.2 ❒❽➟↔❒Û✒❽➟Ú❒Ü✒❽➟↕ ✹➀➅❺❒Ü✒❽➟ ❒❽➟✛❆❫ ❒Û✒❽➟Ú❒Ü✒❽➟♠✛❷♣❂❺ í♥✴➟ ➘✢✛í♥ú➟ í♥ü➂ ✽✭í♥④ ❾➆ Logic Puzzles (4)➞✛➷ P → (Q → R) = (P → Q) → (P → R) P ↔ (Q ↔ R) , (P ↔ Q) ↔ (P ↔ R) (5)✤➌➷(ð✤➷) P ∨ P = P P ∧ P = P P → P = T P ↔ P = T (6)á➶➷ P ∨ (P ∧ Q) = P P ∧ (P ∨ Q) = P (7)✤❾➷ ¬(P ∨ Q) = ¬P ∧ ¬Q ¬(P ∧ Q) = ¬P ∨ ¬Q ¬(P → Q) = P ∧ ¬Q ✹➅⑤ (þ➦✂➀-CIS➣✟➾) ❧Ñê➷✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 6 / 66
第二章:题逻辑的等值和推理演算21值定理22.1基本的等值公式222若干常用的等值公式223置换规则2.4联结词 (7)摩根律(P→Q)=P2=PQ=(PΛ2)V(PAQ) 8)同一律PVF=P,PAT=P, T→P=P,T=P=P, 0P一P三T,P一P= 刘胜利(上海变大CS实验室) 离敢数学第二章:避逻辑的等值和推理演算 7166
✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 2.1 ✤❾➼♥ 2.2.1 ➘✢✛✤❾ú➟ 2.2.2 ❡❩⑦❫✛✤❾ú➟ 2.2.3 ➌❺✺❑ 2.4 é✭❝✛✑✗✽ 2.4.2 é✭❝✛✑✗✽ 2.5 éó➟ 2.6 ❽➟❺❒❽➟ 2.6.2 ❒❽➟↔❒Û✒❽➟Ú❒Ü✒❽➟↕ ✹➀➅❺❒Ü✒❽➟ ❒❽➟✛❆❫ ❒Û✒❽➟Ú❒Ü✒❽➟♠✛❷♣❂❺ í♥✴➟ ➘✢✛í♥ú➟ í♥ü➂ ✽✭í♥④ ❾➆ Logic Puzzles (7)✤❾➷ ¬(P ↔ Q) = ¬P ↔ Q = P ↔ ¬Q = (¬P ∧ Q) ∨ (P ∧ ¬Q) (8)Ó➌➷ P ∨ F = P➜P ∧ T = P➜ T → P = P➜T ↔ P = P➜ P → F = ¬P➜F ↔ P = ¬P (9)✧➷ P ∨ T = T➜P ∧ F = F P → T = T➜F → P = T✧ (10)Ö④➷ P ∨ ¬P = T➜P ∧ ¬P = F P → ¬P = ¬P➜¬P → P = P➜P ↔ ¬P = F✧ ✹➅⑤ (þ➦✂➀-CIS➣✟➾) ❧Ñê➷✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 7 / 66
第二卓;题逻辑的竿值和推理演算21等值定理22.1基本的等值公式222若干常用的等值公式223置换规则2.4联结词6 (7)摩根律(PQ)=P→Q=PQ=(-PΛQ)V(PΛ一Q) (8)同一律PVF=P,PAT=P, T→P=P,T=P=P, P-F=-P,F-P=一P 9零PVT=T,PAF=F P-T=T.-P=I 0P一P三T,P一P= 刘肚利(上海交大CS实验室) 鹰数数学第二章:避逻辑的等值和推理演算 7166
✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 2.1 ✤❾➼♥ 2.2.1 ➘✢✛✤❾ú➟ 2.2.2 ❡❩⑦❫✛✤❾ú➟ 2.2.3 ➌❺✺❑ 2.4 é✭❝✛✑✗✽ 2.4.2 é✭❝✛✑✗✽ 2.5 éó➟ 2.6 ❽➟❺❒❽➟ 2.6.2 ❒❽➟↔❒Û✒❽➟Ú❒Ü✒❽➟↕ ✹➀➅❺❒Ü✒❽➟ ❒❽➟✛❆❫ ❒Û✒❽➟Ú❒Ü✒❽➟♠✛❷♣❂❺ í♥✴➟ ➘✢✛í♥ú➟ í♥ü➂ ✽✭í♥④ ❾➆ Logic Puzzles (7)✤❾➷ ¬(P ↔ Q) = ¬P ↔ Q = P ↔ ¬Q = (¬P ∧ Q) ∨ (P ∧ ¬Q) (8)Ó➌➷ P ∨ F = P➜P ∧ T = P➜ T → P = P➜T ↔ P = P➜ P → F = ¬P➜F ↔ P = ¬P (9)✧➷ P ∨ T = T➜P ∧ F = F P → T = T➜F → P = T✧ (10)Ö④➷ P ∨ ¬P = T➜P ∧ ¬P = F P → ¬P = ¬P➜¬P → P = P➜P ↔ ¬P = F✧ ✹➅⑤ (þ➦✂➀-CIS➣✟➾) ❧Ñê➷✶✓Ù➭➲❑Ü✻✛✤❾Úí♥ü➂ 7 / 66