置换阵 000 P=/1000/P交换A的行,AP交换A的列 0 0100 置换向量p=4132]PA=A(p,) 置换方程求解 x= pib
置换阵 = 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 P PA交换A的行,AP交换A的列 置换向量 p =[4 1 3 2] PA = A(p , :) Px = b x = PTb 置换方程求解
角阵的求解 Ux= b MAtLaB x=zeros(n, 1) X=zeros(n, for k=n: -1 for k=n: -1: 1 x(k)=b(k)/U(k, k) j=k+l:n i=(1k-1)7; x(k)=(b(k)-U(k)*x()/U(kk); b()=b()-X(k)*U(k) end end 求出x(m),然后把x(n)消掉
三角阵的求解 Ux = b x = zeros(n, 1); for k = n:-1:1 x(k) = b(k)/U(k,k); i = (1:k-1)’; b(i) = b(i) – x(k)*U(i,k); end x = zeros(n, 1); for k = n:-1:1 j = k+1:n x(k) = (b(k) – U(k,j)*x(j))/U(k,k); end 求出x(n),然后把x(n)消掉 = = n j i ij j bi u x
LU分解 CF Gauss:高斯消去法(GE) 1955-1977: pivot选主元,舍入误差的影响 高斯消去法分为两步:向前消去和向后替换 U=M.,P.,M,、BM,PA 12…Lm-2U=Pn LU= PA P=PPP
LU分解 C.F.Gauss: 高斯消去法(GE) 1955~1977: pivot选主元,舍入误差的影响 高斯消去法分为两步:向前消去和向后替换 U = Mn−1 Pn−1 ...M2 P2 M1 P1 A L1 L2 ...Ln−1 U = Pn−1 ...P2 P1 A 1 2 1 1 2 1 ... ... P P P P L L L L n n − − = = LU = PA