阅清华大学 Tsinghua University in mSUGRA 1000 1000 tanp =5 tanB= 20 800 800 0.1 0.2 600 0.5 500 0.1 ≤ 400 0.2 0.1 0.5 300 4 300 0.2 100 图50207052 100 20n5 100 200 300 400 100 12 (Gev) M2 Gev) a(PP→H,A→)×BR(H,A→4CN)inb ()=+1A=0
清华大学 Tsinghua University Now what about non-Higgs boson ‘backgrounds’? hello in mSUGRA PP H, A BR H, A 4N in fb sign 1 0 A 0
阅清华大学 Tsinghua University Dependence on sleptons red- Point 1(at location of asterisk) blue-Point 2(at location of asterisk) dashed- Point 2 but change MA=400 GeV, tan B-30 10 dottod-Point 2 but change MA=400 GeV, tan B-5 100 150 200250300350400450500 Gev 京0.9 30 labeling same as in(a) above 432 100150200250300350400450500
清华大学 Tsinghua University Now what about non-Higgs boson ‘backgrounds’? hello Dependence on sleptons
阅清华大学 Tsinghua University Now what about non-Higgs boson backgrounds SM backgrounds can be eliminated mainly through cut coupled with 4e final state Other SUsY processes
清华大学 Tsinghua University Now what about non-Higgs boson ‘backgrounds’? hello Now what about non-Higgs boson backgrounds? SM backgrounds can be eliminated mainly through ET cut coupled with4 final state Other SUSY processes?
阅清华大学 Tsinghua University Let's try to think more generally for a while Look at processes of the type 卩p→XX+su→(7)+(/)+mm Pair production Decay to of new heavy states SM fermion pairs +. Required by some new symmetry of the SM extension e.g. .= R-parity in SUSY .KK-parity in MUED's conservation s Z2-symmetry in lite Higgs models =EeNC T-parity Hubisz meade hep-ph/0411264
清华大学 Tsinghua University Now what about non-Higgs boson backgrounds? Look at processes of the type Let’s try to think more generally for a while … p p X X stuff f1 f1 f 2 f 2 other stuff Pair production of new heavy states Decay to SM fermion pairs Required by some new symmetry of the SM extension e.g.’s: R-parity in SUSY conservation -symmetry in little Higgs models FCNC KK-parity in MUED’s X ? T-parity Hubisz & Meade hep-ph/0411264
SURERSNMMeTR Particle content of the Minimal Supersymmetric Standard Model with SM Particles Superpartner Sparticles EW Symmetry Breaking MSSM leptons sleptons e with R-parity conservation) 证4“元水证daL squire mass IR quarks Yukawa interactions LSP is stable and invisible with Higgs basons' CR1 RI tR, bR sons PP→XX+suf→()+() +E+ other W=(Wl, W2, w5)f stuff gluon=g(octet) spin-2 graviton Here we take X=(A1,x2,x3) gluino=g(octet) Higgs scalars (spin-2 gravitino charginos X=a decaying neutralino #-cihareoy 对,过 ∫H+,A H (ino for short) L(rep) neutralinos ,,君, L(2 rep) 2 4 L(2 rep) ' sfermions also have soft SUSY-breaking mass terms
MSSM with R-parity conservation LSP is stable and invisible 0 1 p p X X stuff f1 f1 f2 f2 E other stuff Here we take X a decaying neutralino (-ino for short) 0 0 0 2 3 4 , ,