计算机问题求解一论题3-6 树 2022年10月19日
计算机问题求解 – 论题3-6 - 树 2022年10月19日
Theorem 4.1 An edge e of a graph G is a bridge if and only if e lies on no cycle of G. tree:无环连通图 推论:Every edge in a tree is a bridge 问题1g 从应用的角度看。上述推论有何指导意义?
Theorem 4.1 An edge e of a graph G is a bridge if and only if e lies on no cycle of G. 推论:Every edge in a tree is a bridge tree:无环连通图
从同构的角度看,有个点的不同构的树,有多少个? T2 Ta T, 我们有T(n)=1,1,1,1,2,3,6,11,23,47,106,235,551,1301,3159,. Otter(1948)proved the asymptotic estimate t(n)~Ca"n5/2asn→o, with the values C and a known to be approximately 0.534949606...and 2.95576528565
从同构的角度看,有n个点的不同构的树,有多少个? 我们有T(n) =
树、根树和有向树有什么差别? 备注:如果我们只谈树,没有父子兄弟之概念
树、根树和有向树有什么差别? 备注:如果我们只谈树,没有父子兄弟之概念
For an n-vertex graph G(with n>1),the following are equiv- alent(and characterize the trees with n vertices). A)G is connected and has no cycles. B)G is connected and has n-1 edges. C)G has n-1 edges and no cycles. D)For u,vV(G),G has exactly one u,v-path. 问题2: 如何证明一系列命题等价? 问题38 不能有回路对最小顶点度数有什么影响?