很经典的热处理工艺资料,也许会对您有所帮助! 金属热处理基本知识 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间 后,又以不同速度冷却的一种工艺。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富 有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体) 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另 组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强 度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分, 具有独立的机械性能 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c含碳0.8%) 莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%) 金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的 形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分, 赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工 艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复 杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、 镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性 能 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在 公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的 影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国 河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火 的 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜 谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不 同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公 元24中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明 已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了 钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相
很经典的热处理工艺资料,也许会对您有所帮助! 金属热处理基本知识 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间 后,又以不同速度冷却的一种工艺。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富 有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一 组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强 度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分, 具有独立的机械性能。 铁素体:碳在 a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在 g-Fe(面心立方结构的铁)中的间隙固溶体。 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳 0.8%) 莱氏体:渗碳体和奥氏体组成的机械混合物(含碳 4.3%) 金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的 形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分, 赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工 艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复 杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、 镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性 能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在 公元前 770~前 222 年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的 影响而 变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国 河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火 的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜 谷为诸葛亮打制 3000 把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不 同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前 206~公 元 24)中山靖王墓中的宝剑,心部含碳量为 0.15~0.4%,而表面含碳量却达 0.6%以上,说明 已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863 年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了 钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相
法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代 热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金 属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系 列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利 二十世纪以来,金属物理的发展和其它新技术的移植应用,使金属热处理工艺得到更大发展。 个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳:;30年代出现 露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进 一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子 渗氮、滲碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处 理方法 金属热处理的工艺 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程 互相衔接,不可间断 加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源, 进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直 接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。 金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对 于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔 融盐中和真空中加热,也可用涂料或包装方法进行保护加热。 加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的 主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变 温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加 热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时 间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间, 而化学热处理的保温时间往往较长。 冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却 速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种 不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬 金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。根据加热介质 加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用 不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金 属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。 整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处 理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺 退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷 却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为 进一步淬火作组织准备。正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退 火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的 零件作为最终热处理 淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬 火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃ 的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、 回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可
法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代 热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金 属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880 年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系 列专利。1889~1890 年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其它新技术的移植应用,使金属热处理工艺得到更大发展。 一个显著的进展是 1901~1925 年,在工业生产中应用转筒炉进行气体渗碳 ;30 年代出现 露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进 一步控制炉内气氛碳势的方法;60 年代,热处理技术运用了等离子场的作用,发展了离子 渗氮、渗碳工艺 ;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处 理方法。 金属热处理的工艺 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程 互相衔接,不可间断。 加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源, 进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直 接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。 金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对 于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔 融盐中和真空中加热,也可用涂料或包装方法进行保护加热。 加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度 ,是保证热处理质量的 主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变 温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加 热温度时,还须在此温度保持一定时间,使内外温度一致, 使显微组织转变完全,这段时 间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间, 而化学热处理的保温时间往往较长。 冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却 速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种 不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。 金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。根据加热介质、 加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用 不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金 属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。 整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处 理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。 退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷 却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为 进一步淬火作组织准备。正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退 火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的 零件作为最终热处理。 淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬 火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于 650℃ 的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、 回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可
四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得一定 的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固 溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性 磁性等。这样的热处理工艺称为时效处理 把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的 方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件 不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入滲剂进行化学热 处理 表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件 表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工 件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有 火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子 束等。 化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表 面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或 其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳 氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理 的主要方法有渗碳、渗氮、渗金属。 热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件 的各种性能,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、 热加工。 例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性;齿轮采用正确的热处理 工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入 某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢:工模具则几 乎全部需要经过热处理方可使用 钢的分类 钢是以铁、碳为主要成分的合金,它的含碳量一般小于2.11%。钢是经济建设中极为重要 的金属材料 钢按化学成分分为碳素钢(简称碳钢)与合金钢两大类。碳钢是由生铁冶炼获得的合金,除 铁、碳为其主要成分外,还含有少量的锰、硅、硫、磷等杂质。碳钢具有一定的机械性能, 又有良好的工艺性能,且价格低廉。因此,碳钢获得了广泛的应用。但随着现代工业与科学 技术的迅速发展,碳钢的性能已不能完全满足需要,于是人们研制了各种合金钢。合金钢是 在碳钢基础上,有目的地加入某些元素(称为合金元素)而得到的多元合金。与碳钢比,合 金钢的性能有显著的提高,故应用日益广泛。 由于钢材品种繁多,为了便于生产、保管、选用与研究,必须对钢材加以分类。按钢材的用 途、化学成分、质量的不同,可将钢分为许多类: 按用途分类 按钢材的用途可分为结构钢、工具钢、特殊性能钢三大类 结构钢:1.用作各种机器零件的钢。它包括滲碳钢、调质钢、弹簧钢及滚动轴承钢 2.用作工程结构的钢。它包括碳素钢中的甲、乙、特类钢及普通低合金钢。 工具钢:用来制造各种工具的钢。根据工具用途不同可分为刃具钢、模具钢与量具钢。 特殊性能钢:是具有特殊物理化学性能的钢。可分为不锈钢、耐热钢、耐磨钢、磁钢等 二.按化学成分分类 按钢材的化学成分可分为碳素钢和合金钢两大类
“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺 。为了获得一定 的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固 溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性 磁性等。这样的热处理工艺称为时效处理。 把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的 方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件 不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热 处理。 表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件 表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工 件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有 火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子 束等。 化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表 面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或 其它合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、 氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理 的主要方法有渗碳、渗氮、渗金属。 热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件 的各种性能 ,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、 热加工。 例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性 ;齿轮采用正确的热处理 工艺,使用寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入 某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢 ;工模具则几 乎全部需要经过热处理方可使用。 钢的分类 钢是以铁、碳为主要成分的合金,它的含碳量一般小于 2.11% 。钢是经济建设中极为重要 的金属材料。 钢按化学成分分为碳素钢(简称碳钢)与合金钢两大类。碳钢是由生铁冶炼获得的合金,除 铁、碳为其主要成分外,还含有少量的锰、硅、硫、磷等杂质。碳钢具有一定的机械性能, 又有良好的工艺性能,且价格低廉。因此,碳钢获得了广泛的应用。但随着现代工业与科学 技术的迅速发展,碳钢的性能已不能完全满足需要,于是人们研制了各种合金钢。合金钢是 在碳钢基础上,有目的地加入某些元素(称为合金元素)而得到的多元合金。与碳钢比,合 金钢的性能有显著的提高,故应用日益广泛。 由于钢材品种繁多,为了便于生产、保管、选用与研究,必须对钢材加以分类。按钢材的用 途、化学成分、质量的不同,可将钢分为许多类: 一. 按用途分类 按钢材的用途可分为结构钢、工具钢、特殊性能钢三大类。 结构钢:1.用作各种机器零件的钢。它包括渗碳钢、调质钢、弹簧钢及滚动轴承钢。 2.用作工程结构的钢。它包括碳素钢中的甲、乙、特类钢及普通低合金钢。 工具钢:用来制造各种工具的钢。根据工具用途不同可分为刃具钢、模具钢与量具钢。 特殊性能钢:是具有特殊物理化学性能的钢。可分为不锈钢、耐热钢、耐磨钢、磁钢等。 二. 按化学成分分类 按钢材的化学成分可分为碳素钢和合金钢两大类
碳素钢:按含碳量又可分为低碳钢(含碳量≤0.25%);中碳钢(0.25%<含碳量<0.6%);高 碳钢(含碳量≥0.6%)。 合金钢:按合金元素含量又可分为低合金钢(合金元素总含量≤5%);中合金钢(合金元素 总含量=5%-10%);高合金钢(合金元素总含量>10%)。此外,根据钢中所含主要合金元素 种类不同,也可分为锰钢、铬钢、铬镍钢、铬锰钛钢等。 按质量分类 按钢材中有害杂质磷、硫的含量可分为普通钢(含磷量≤0.045%、含硫量≤0.05%:或磷、 硫含量均≤0.050%);优质钢(磷、硫含量均≤0.040%);高级优质钢(含磷量≤0.035%、含 硫量≤0.030%)。 此外,还有按冶炼炉的种类,将钢分为平炉钢(酸性平炉、碱性平炉),空气转炉钢(酸性 转炉、碱性转炉、氧气顶吹转炉钢)与电炉钢。按冶炼时脱氧程度,将钢分为沸腾钢(脱氧 不完全),镇静钢(脱氧比较完全)及半镇静钢。 钢厂在给钢的产品命名时,往往将用途、成分、质量这三种分类方法结合起来。如将钢称为 普通碳素结构钢、优质碳素结构钢、碳素工具钢、高级优质碳素工具钢、合金结构钢、合金 工具钢等。 金属材料的机械性能 金属材料的性能一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造 过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏 决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同 如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。所谓使用性能是指机械零件在 使用条件下,金属材料表现出来的性能,它包括机械性能、物理性能、化学性能等。金属材 料使用性能的好坏,决定了它的使用范围与使用寿命。 在机械制造业中,一般机械零件都是在常温、常压和非强烈腐蚀性介质中使用的,且在使用 过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为 机械性能(或称为力学性能)。 金属材料的机械性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压 缩、扭转、冲击、循环载荷等),对金属材料要求的机械性能也将不同。常用的机械性能包 括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。下面将分别讨论各种机械 性能 1.强度 强度是指金属材料在静荷作用下抵抗破坏(过量塑性变形或断裂)的性能。由于载荷的作用 方式有拉伸、压缩、弯曲、剪切等形式,所以强度也分为抗拉强度、抗压强度、抗弯强度 抗剪强度等。各种强度间常有一定的联系,使用中一般较多以抗拉强度作为最基本的强度指 针。 2.塑性 塑性是指金属材料在载荷作用下,产生塑性变形(永久变形)而不破坏的能力, 3.硬度 硬度是衡量金属材料软硬程度的指针。目前生产中测定硬度方法最常用的是压入硬度法,它 是用一定几何形状的压头在一定载荷下压入被测试的金属材料表面,根据被压入程度来测定 其硬度值。 常用的方法有布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)和维氏硬度(Ⅳ)等方法 4.疲劳 前面所讨论的强度、塑性、硬度都是金属在静载荷作用下的机械性能指针。实际上,许多机 器零件都是在循环载荷下工作的,在这种条件下零件会产生疲劳
碳素钢:按含碳量又可分为低碳钢(含碳量≤0.25%);中碳钢(0.25%<含碳量<0.6%);高 碳钢(含碳量≥0.6%)。 合金钢:按合金元素含量又可分为低合金钢(合金元素总含量≤5%);中合金钢(合金元素 总含量=5%--10%);高合金钢(合金元素总含量>10%)。此外,根据钢中所含主要合金元素 种类不同,也可分为锰钢、铬钢、铬镍钢、铬锰钛钢等。 三. 按质量分类 按钢材中有害杂质磷、硫的含量可分为普通钢(含磷量≤0.045%、含硫量≤0.055%;或磷、 硫含量均≤0.050%);优质钢(磷、硫含量均≤0.040%);高级优质钢(含磷量≤0.035%、含 硫量≤0.030%)。 此外,还有按冶炼炉的种类,将钢分为平炉钢(酸性平炉、碱性平炉),空气转炉钢(酸性 转炉、碱性转炉、氧气顶吹转炉钢)与电炉钢。按冶炼时脱氧程度,将钢分为沸腾钢(脱氧 不完全),镇静钢(脱氧比较完全)及半镇静钢。 钢厂在给钢的产品命名时,往往将用途、成分、质量这三种分类方法结合起来。如将钢称为 普通碳素结构钢、优质碳素结构钢、碳素工具钢、高级优质碳素工具钢、合金结构钢、合金 工具钢等。 金属材料的机械性能 金属材料的性能一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造 过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏, 决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同, 如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。所谓使用性能是指机械零件在 使用条件下,金属材料表现出来的性能,它包括机械性能、物理性能、化学性能等。金属材 料使用性能的好坏,决定了它的使用范围与使用寿命。 在机械制造业中,一般机械零件都是在常温、常压和非强烈腐蚀性介质中使用的,且在使用 过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为 机械性能(或称为力学性能)。 金属材料的机械性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压 缩、扭转、冲击、循环载荷等),对金属材料要求的机械性能也将不同。常用的机械性能包 括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。下面将分别讨论各种机械 性能。 1. 强度 强度是指金属材料在静荷作用下抵抗破坏(过量塑性变形或断裂)的性能。由于载荷的作用 方式有拉伸、压缩、弯曲、剪切等形式,所以强度也分为抗拉强度、抗压强度、抗弯强度、 抗剪强度等。各种强度间常有一定的联系,使用中一般较多以抗拉强度作为最基本的强度指 针。 2. 塑性 塑性是指金属材料在载荷作用下,产生塑性变形(永久变形)而不破坏的能力。 3. 硬度 硬度是衡量金属材料软硬程度的指针。目前生产中测定硬度方法最常用的是压入硬度法,它 是用一定几何形状的压头在一定载荷下压入被测试的金属材料表面,根据被压入程度来测定 其硬度值。 常用的方法有布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)和维氏硬度(HV)等方法。 4. 疲劳 前面所讨论的强度、塑性、硬度都是金属在静载荷作用下的机械性能指针。实际上,许多机 器零件都是在循环载荷下工作的,在这种条件下零件会产生疲劳
5.冲击韧性 以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做 冲击韧性 退火—淬火-回火 退火的种类 1.完全退火和等温退火 完全退火又称重结晶退火,一般简称为退火,这种退火主要用于亚共析成分的各种碳钢和合 金钢的铸,锻件及热轧型材,有时也用于焊接结构。一般常作为一些不重工件的最终热处理, 或作为某些工件的预先热处理。 2.球化退火 球化退火主要用于过共析的碳钢及合金工具钢(如制造刃具,量具,模具所用的钢种)。其 主要目的在于降低硬度,改善切削加工性,并为以后淬火作好准备。 3.去应力退火 去应力退火又称低温退火(或高温回火),这种退火主要用来消除铸件,锻件,焊接件,热 轧件,冷拉件等的残余应力。如果这些应力不予消除,将会引起钢件在一定时间以后,或在 随后的切削加工过程中产生变形或裂纹。 二.淬火时,最常用的冷却介质是盐水,水和油。盐水淬火的工件,容易得到高的硬度和光 洁的表面,不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。而用油作淬 火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火 三.钢回火的目的 1.降低脆性,消除或减少内应力,钢件淬火后存在很大内应力和脆性,如不及时回火往往 会使钢件发生变形甚至开裂。 2.获得工件所要求的机械性能,工件经淬火后硬度高而脆性大,为了满足各种工件的不同 性能的要求,可以通过适当回火的配合来调整硬度,减小脆性,得到所需要的韧性,塑性。 3.稳定工件尺寸 4.对于退火难以软化的某些合金钢,在淬火(或正火)后常采用高温回火,使钢中碳化物 适当聚集,将硬度降低,以利切削加工 炉型的选择 炉型应依据不同的工艺要求及工件的类型来决定 1.对于不能成批定型生产的,工件大小不相等的,种类较多的,要求工艺上具有通用性 多用性的,可选用箱式炉 2.加热长轴类及长的丝杆,管子等工件时,可选用深井式电炉。 3.小批量的渗碳零件,可选用井式气体渗碳炉, 4.对于大批量的汽车、拖拉机齿轮等零件的生产可选连续式渗碳生产线或箱式多用炉。 5.对冲压件板材坯料的加热大批量生产时,最好选用滚动炉,辊底炉 6.对成批的定型零件,生产上可选用推杆式或传送带式电阻炉(推杆炉或铸带炉) 7.小型机械零件如:螺钉,螺母等可选用振底式炉或网带式炉。 8.钢球及滚柱热处理可选用内螺旋的回转管炉。 9.有色金属锭坯在大批量生产时可用推杆式炉,而对有色金属小零件及材料可用空气循环 加热炉。 加热缺陷及控制 、过热现象 我们知道热处理过程中加热过热最易导致奥氏体晶粒的粗大,使零件的机械性能下降。 1.一般过热:加热温度过高或在高温下保温时间过长,引起奥氏体晶粒粗化称为过热。粗大
5. 冲击韧性 以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做 冲击韧性。 退火---淬火---回火 一.退火的种类 1. 完全退火和等温退火 完全退火又称重结晶退火,一般简称为退火,这种退火主要用于亚共析成分的各种碳钢和合 金钢的铸,锻件及热轧型材,有时也用于焊接结构。一般常作为一些不重工件的最终热处理, 或作为某些工件的预先热处理。 2. 球化退火 球化退火主要用于过共析的碳钢及合金工具钢(如制造刃具,量具,模具所用的钢种)。其 主要目的在于降低硬度,改善切削加工性,并为以后淬火作好准备。 3. 去应力退火 去应力退火又称低温退火(或高温回火),这种退火主要用来消除铸件,锻件,焊接件,热 轧件,冷拉件等的残余应力。如果这些应力不予消除,将会引起钢件在一定时间以后,或在 随后的切削加工过程中产生变形或裂纹。 二.淬火时,最常用的冷却介质是盐水,水和油。盐水淬火的工件,容易得到高的硬度和光 洁的表面,不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。而用油作淬 火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。 三.钢回火的目的 1. 降低脆性,消除或减少内应力,钢件淬火后存在很大内应力和脆性,如不及时回火往往 会使钢件发生变形甚至开裂。 2. 获得工件所要求的机械性能,工件经淬火后硬度高而脆性大,为了满足各种工件的不同 性能的要求,可以通过适当回火的配合来调整硬度,减小脆性,得到所需要的韧性,塑性。 3. 稳定工件尺寸 4. 对于退火难以软化的某些合金钢,在淬火(或正火)后常采用高温回火,使钢中碳化物 适当聚集,将硬度降低,以利切削加工。 炉型的选择 炉型应依据不同的工艺要求及工件的类型来决定 1.对于不能成批定型生产的,工件大小不相等的,种类较多的,要求工艺上具有通用性、 多用性的,可选用箱式炉。 2.加热长轴类及长的丝杆,管子等工件时,可选用深井式电炉。 3.小批量的渗碳零件,可选用井式气体渗碳炉。 4.对于大批量的汽车、拖拉机齿轮等零件的生产可选连续式渗碳生产线或箱式多用炉。 5.对冲压件板材坯料的加热大批量生产时,最好选用滚动炉,辊底炉。 6.对成批的定型零件,生产上可选用推杆式或传送带式电阻炉(推杆炉或铸带炉) 7.小型机械零件如:螺钉,螺母等可选用振底式炉或网带式炉。 8.钢球及滚柱热处理可选用内螺旋的回转管炉。 9.有色金属锭坯在大批量生产时可用推杆式炉,而对有色金属小零件及材料可用空气循环 加热炉。 加热缺陷及控制 一、过热现象 我们知道热处理过程中加热过热最易导致奥氏体晶粒的粗大,使零件的机械性能下降。 1.一般过热:加热温度过高或在高温下保温时间过长,引起奥氏体晶粒粗化称为过热。粗大