多感官群集智能算法及其在前向神经网络训练方面的应用

针对连续域函数优化问题,提出了一种新的全局极大值搜索方法——多感官群集智能算法(multi-sense swarmintelli-gence algorithm,MSA).受鱼群算法(artificial fish-swarmalgorithm,AFA)和FS算法(free search algorithm,FSA)的启发,MSA的搜索机制将大范围勘察和小范围精确搜索相结合,个体在使用视觉信息快速逼近局部较优解的同时,利用嗅觉信息避免群体过于集中并引导个体向全局较优解方向移动.仿真结果证明:MSA鲁棒性较强,全局收敛性好,收敛速度较快,收敛精度较高.最后,将该方法应用于前向神经网络训练,结果表明满足应用要求.
文件格式:PDF,文件大小:753.13KB,售价:2.16元
文档详细内容(约6页)
点击进入文档下载页(PDF格式)
共6页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录