线性分类 w ,线性分类器 X w 。扩展权向量 y=(w')x' 0 1◇ W'=
线性分类器 ◦ 扩展权向量 ' ' T y w x 0 ' , ' 1 w x w x
线性分类 ,最小二乘解一一矩阵法 。给定样本{飞,y},乃={-1,1,构造矩阵Φ 起 x81… Φ= W w=(w'Φ)'Φ'y
最小二乘解——矩阵法 ◦ 给定样本 ,构造矩阵Ф [1] [2] [ ] 1 1 1 1 [1] [2] [ ] 2 2 2 2 [1] [2] [ ] ... ... ... ... ... K K K N N N N x x x x x x x x x x x x 1 T T w y xi i i , , { 1,1} y y
close all clear all 线性分类 clc Obj1.NTrain 100; 0bj1.mean=2.5*[3;51: Obj1.SampTrain randn(2,Obj1.NTrain)+ kron(Obj1.mean,ones(1,Obj1.NTrain)): Obj1.NTest 100; Obj1.SampTest randn(2,Obj1.NTest)+ 最小二乘解 kron(Obj1.mean,ones(1,Obj1.NTest)); Obj2.NTrain 100; 16 0bj2.mean=-0.0*[3:51: Obj2.SampTrain randn(2,Obj2.NTrain)+ TestMatrix kron(Obj2.mean,ones(1,Obj2.NTrain)); Obj2.NTest 100; Obj2.SampTest randn(2,Obj2.NTest)+ kron(Obj2.mean,ones(1,Obj2.NTest)); 1 0 LMS 0 TestMatrix zeros(2); cnt_cl 1; cnt_c2 =1; t=1:1000: tt=(t-500)*0.01: figure; TestMatrix plot(Obj1.SampTrain(1,:)Obj1.SampTrain(2,:), 'ro','linewidth',2,'markersize',10) hold on; 0.9500 0.0500 plot(Obj2.SampTrain(1,:)Obj2.SampTrain(2,:) 'bo','linewidth',2,'markersize',10) 0.1400 0.8600 cnt 1; X zeros(Obj1.NTrain Obj2.NTrain,3); for iii =1:Obj1.NTrain X(cnt,1 2)=Obj1 .SampTrain(:,iii); X(cnt,3)=1: ycnt,1)=1: cntcnt 1;
最小二乘解 close all clear all clc Obj1.NTrain = 100; Obj1.mean = 2.5 * [3; 5]; Obj1.SampTrain = randn(2, Obj1.NTrain) + kron(Obj1.mean, ones(1, Obj1.NTrain)); Obj1.NTest = 100; Obj1.SampTest = randn(2, Obj1.NTest) + kron(Obj1.mean, ones(1, Obj1.NTest)); Obj2.NTrain = 100; Obj2.mean = -0.0 * [3; 5]; Obj2.SampTrain = randn(2, Obj2.NTrain) + kron(Obj2.mean, ones(1, Obj2.NTrain)); Obj2.NTest = 100; Obj2.SampTest = randn(2, Obj2.NTest) + kron(Obj2.mean, ones(1, Obj2.NTest)); % LMS TestMatrix = zeros(2); cnt_c1 = 1; cnt_c2 = 1; tt = 1 : 1000; tt = (tt - 500) * 0.01; figure; plot(Obj1.SampTrain(1, :), Obj1.SampTrain(2, :), 'ro', 'linewidth', 2, 'markersize', 10) hold on; plot(Obj2.SampTrain(1, :), Obj2.SampTrain(2, :), 'bo', 'linewidth', 2, 'markersize', 10) cnt = 1; X = zeros(Obj1.NTrain + Obj2.NTrain, 3); for iii = 1 : Obj1.NTrain X(cnt, 1 : 2) = Obj1.SampTrain(:, iii); X(cnt, 3) = 1; y(cnt, 1) = 1; cnt = cnt + 1; end - 5 0 5 10 - 4 - 202468 10 12 14 16 - 5 0 5 - 3 - 2 - 10123456
线性分类 ,均方误差准则 给定样本x∈O,其希望标签为“1”,线性分类器输出为,=wX, 误差为:e=1-y,=1-wx=1-xw 给定o,类样本的似然函数为:p(x/o)以及®的先验概率:P(@) 则,o类样本误差为: J(@iw)=P(@,)(I-x"w)p(x/@)dx 总均方误差为: J(w)=J(0;w)+J(0;w) =P(@)[(I-x'w)"p(x/@)dx+P(@2)(1+x"w)"p(x/@2)dx
均方误差准则 1 1 1 1 1 2 1 1 1 1 1 1 1 , = , ˆ 1 1 1 ˆ ( / ) ( ) ( ) ( ) (1 ) ( / ) ( ) ( ) ( ) = ( ) (1 ) T i i T T i i i T T y e y p P J P p d J J J P x w x w x x w x w x w x x w w w x w “” = , ; ; ; 给定样本 线性分类器输出为 误差为: 给定 类样本的似然函数为: 则 总均方误差为: 1 , 其希望标签为 以及ω 的先验概率: 类样本误差为: 2 2 1 2 2 ( / ) ( ) (1 ) ( / ) T p d P p d x x x w x x
线性分类 ,最小均方误差 a/(w) OP(@)(1-x"w)p(x/@)dx Ow Ow OP(@2)(1+x"w)p(x/@2)dx Ow -P(@,)[(-2x"+xx"w)p(x/@.)dx +P(@2)[(2x"+xx"w)p(x/@2)dx →E[xx]w=E[y→we=(E[x])E[y
最小均方误差 2 1 1 2 2 2 1 1 2 2 1 ( ) (1 ) ( / ) ( ) ( ) (1 ) ( / ) ( ) 2 ( / ) ( ) 2 ( / ) T T T T T T T T MSE P p d J P p d P p d P p d y y w x w x x w w x w x x w x xx w x x x xx w x x E xx w E x w E xx E x