反向凝固过程中铸带厚度及晶粒度的预测

基于人工神经网络建立了反向凝固过程中的性能预测模型,实现了对铸带厚度和新相层晶粒度的全面预测;探讨了凝固过程中的主要工艺参数对上述性能的综合影响,为反向凝固性能的综合预测提供了简便的新手段.研究表明,新生相晶粒度随钢水过热度、母带厚度、浸入时间变化对其影响不显著,而钢水过热度、母带厚度、浸入时间变化对铸带厚度的影响较大.该模型的预测结果与实测的结果较为接近.
文件格式:PDF,文件大小:438.51KB,售价:1.44元
文档详细内容(约4页)
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录