多元时序模糊聚类分段挖掘算法

工业监控系统所采集到的多元时间序列在利用数据挖掘技术获取内部存在的未知模式的过程中,经常会出现原始数据庞杂、分段结果重复、交集过多和界限不清晰等问题,导致含有突变变量或数据间相关性差的数据集进行模式挖掘结果不理想.针对上述问题,本文提出了一种新的多元时序模糊聚类分段挖掘算法.实验结果表明,该算法克服了Gath-Geva算法聚类精度易受初始值影响的不足,能够较好地反映出原始数据中潜在的过程变化,从而有效地处理时间序列的分段问题并得到理想的挖掘结果.
文件格式:PDF,文件大小:429.34KB,售价:2.16元
文档详细内容(约6页)
点击进入文档下载页(PDF格式)
共6页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录