3平面-般力系 ◆定义:作用在物体上的各力的作用线都在同 平面内,既不相交于一点又不完全平行,这样 的力系称为平面一般力系。如图起重机横梁。 FT FAV 珀0 F Ax im G Q
3.平面一般力系 定义:作用在物体上的各力的作用线都在同一 平面内,既不相交于一点又不完全平行,这样 的力系称为平面一般力系。如图起重机横梁。 G Q FAy FAx FT
◆平面一般力系的简化 1.力的平移定理 M(F,F")=土F=Mo(F) 因此:作用于刚体上的力,可平移到刚体上的 任意一点,但必须附加一力偶,其附加力偶矩 等于原力对平移点的力矩
平面一般力系的简化 1.力的平移定理 F A O F′ F″ A O F′ M = 因此:作用于刚体上的力,可平移到刚体上的 任意一点,但必须附加一力偶,其附加力偶矩 等于原力对平移点的力矩。 M(F F ) Fd M (F) = = O , d d
2.平面一般力系向平面内任意一点的简化 作用于简化中心O点的平面汇交力系可合成为一个力,称 为该力系的主矢F其作用线过简化中心点O。各附加力 偶组成的平面力偶系的合力偶矩,称为该力系的主矩Mo 主矩等于各分力对简化中心的力矩的代数和,作用在力系 所在的平面上如图示。主矢的大小和方向为 F=∑F+FP=+∑6 tan a
2.平面一般力系向平面内任意一点的简化 作用于简化中心O点的平面汇交力系可合成为一个力,称 为该力系的主矢 ,其作用线过简化中心点O。各附加力 偶组成的平面力偶系的合力偶矩,称为该力系的主矩 。 主矩等于各分力对简化中心的力矩的代数和,作用在力系 所在的平面上,如图示。主矢的大小和方向为: FR ( ) ( ) ( ) ( ) = = + = + x y R x y x y F F F F F F F tan 2 2 2 2 MO
3.简化结果及分析 结果:平面一般力系向平面内一点简化,得到一个主 矢和一个主矩,主矢的大小和方向与简化中心的选择 无关。主矩的值一般与简化中心的选择有关 分析: (1)若FF≠0,M郾力系简化为一个力和 个力偶。在这种情况下,根据力的平移定理,这 个力和力偶还可以继续合成为一个合力F,其作用 线离O点的距离为d=M/秒用主矩的转向来 确定合力辰的作用线在简化中心的哪一侧。 FR R /ER O M O O
3.简化结果及分析 结果:平面一般力系向平面内一点简化,得到一个主 矢和一个主矩,主矢的大小和方向与简化中心的选择 无关。主矩的值一般与简化中心的选择有关。 分析: (1)若 ,则原力系简化为一个力和 一个力偶。在这种情况下,根据力的平移定理,这 个力和力偶还可以继续合成为一个合力FR,其作用 线离O点的距离为 ,利用主矩的转向来 确定合力FR的作用线在简化中心的哪一侧。 FR 0,MO 0 / O R d M F = O FR′ Mo O FR d O Mo FR′ O FR d
(2)若FR≠0,Mo则原力系简化为一个力。在这种情 况下,附加力偶系平衡,主矢即为原力系的合力F ,作用于简化中心 (3)若FR=0,M刨原系简化为一个力偶,其矩等于 原力系对简化中心的主矩。在这种情况下,简化结 果与简化中心的选择无关。即无论力系向哪一点简 化都是一个力偶,且力偶矩等于主矩。 (4)若FR=0,M原力系是平衡力系 同理,如果力系是平衡力系,该力系的主矢、主矩 必然为零。因此,FR=0 0就是平面一般力 系平衡的必要与充分条件 由此可 得平面 ∑ F=0 般力 SF,=0 系的平 衡方程 为: ∑M(F)=0
(2)若 ,则原力系简化为一个力。在这种情 况下,附加力偶系平衡,主矢即为原力系的合力FR ,作用于简化中心。 (3)若 ,则原力系简化为一个力偶,其矩等于 原力系对简化中心的主矩。在这种情况下,简化结 果与简化中心的选择无关。即无论力系向哪一点简 化都是一个力偶,且力偶矩等于主矩。 (4)若 ,则原力系是平衡力系。 同理,如果力系是平衡力系,该力系的主矢、主矩 必然为零。因此, 就是平面一般力 系平衡的必要与充分条件。 FR = 0,MO = 0 FR 0,MO = 0 FR = 0,MO 0 FR = 0,MO = 0 由此可 得平面 一般力 系的平 衡方程 为: 0 0 ( ) 0 x y O F F M F = = =