温动向边签解法 第六章温应力题的基本解法 当弹性体的温度变化时,其体积将趋于膨胀和收缩,若 外部的约束或内部的变形协调要求而使膨胀或收缩不能自由 发生时,结构中就会出现附加的应力。这种因温度变化而引 起的应力称为热应力,或温度应力。 忽略变温对材料性能的影响,为了求得温度应力,需要 进行两方面的计算:(1)由问题的初始条件、边界条件, 按热传导方程求解弹性体的温度场,而前后两个温度场之差 就是弹性体的变温。(2)按热弹性力学的基本方程求解弹 性体的温度应力。本章将对这两方面的计算进行简单的介绍
6 当弹性体的温度变化时,其体积将趋于膨胀和收缩,若 外部的约束或内部的变形协调要求而使膨胀或收缩不能自由 发生时,结构中就会出现附加的应力。这种因温度变化而引 起的应力称为热应力,或温度应力。 忽略变温对材料性能的影响,为了求得温度应力,需要 进行两方面的计算:(1)由问题的初始条件、边界条件, 按热传导方程求解弹性体的温度场,而前后两个温度场之差 就是弹性体的变温。(2)按热弹性力学的基本方程求解弹 性体的温度应力。本章将对这两方面的计算进行简单的介绍
86-1 The Basic Concept of Temperature Field And Heat Conduction 1. The temperature field The total of the temperature at all the points in a 0 Unstable temperature filed or nonsteady temperature field: The temperature clastic body at a certain moment, denoted by t in the temperature field changes with time i.e. T-T(x, y, 2, t) Stable temperature filed or steady temperature field The temperature in the temperature field is only the function of positional coordinates i.e. TT(x,y, Plane temperature field: The temperature in temperature field only changes ith two positional coordinates i.e. T=T O x,y,t) 7
7 §6-1 The Basic Concept of Temperature Field And Heat Conduction 1.The temperature field: The total of the temperature at all the points in a elastic body at a certain moment, denoted by T. Unstable temperature filed or nonsteady temperature field: The temperature in the temperature field changes with time. i.e. T=T(x,y,z,t) Stable temperature filed or steady temperature field: The temperature in the temperature field is only the function of positional coordinates. i.e. T=T(x,y,z) Plane temperature field: The temperature in temperature field only changes with two positional coordinates. i.e. T=T(x,y,t)
温动向边签解法 §6-1温度场和热传导的基本概念 1.温度场:在任一瞬时,弹性体内所有各点的温度值的总体。用 7表示。 不稳定温度场或非定常温度场:温度场的温度随时间而变化。 即77(x,y,z,t) 稳定温度场或定常温度场:温度场的温度只是位置坐标的函数。 即=(x,y,z) 平面温度场:温度场的温度只随平面内的两个位置坐标而变。 即7=7(x,J,t)
8 §6-1 温度场和热传导的基本概念 1.温度场:在任一瞬时,弹性体内所有各点的温度值的总体。用 T表示。 不稳定温度场或非定常温度场:温度场的温度随时间而变化。 即 T=T(x,y,z,t) 稳定温度场或定常温度场:温度场的温度只是位置坐标的函数。 即 T=T(x,y,z) 平面温度场:温度场的温度只随平面内的两个位置坐标而变。 即 T=T(x,y,t)
The Basic Soltion he demerara es Problems 2. Isothermal surface: The surface that connects all the points with the same temperature in the temperature field at a +2△T certain moment. apparently, the temperature doesnt changes along the T+△T isothermal surface; The changing rate is T-△T the largest along the normal direction of the isothermal surface 3.Temperature gradient: The vector that points to the direction in which temperature increase along the normal direction of the isothermal surface It is denoted by t and its value is denoted by ar an, where n is the normal direction of the isothermal surface. The components of temperature gradient at each coordinate are 9
9 2.Isothermal surface: The surface that connects all the points with the same temperature in the temperature field at a certain moment. Apparently, the temperature doesn’t changes along the isothermal surface; The changing rate is the largest along the normal direction of the isothermal surface. T+2△T T+△T T T-△T o x y 3.Temperature gradient:The vector that points to the direction in which temperature increase along the normal direction of the isothermal surface. It is denoted by △T, and its value is denoted by , where n is the normal direction of the isothermal surface. The components of temperature gradient at each coordinate are n T
温动向边签解法 2.等温面:在任一瞬时,连接温度 场内温度相同各点的曲面。显然, w2△T沿着等温面,温度不变;沿着等温 T+△T 面的法线方向,温度的变化率最大 3.温度梯度:沿等温面的法线方向,指向温度增大方向的矢 T 量。用△T表示,其大小用动表示。其中n为等温面的法线方 向。温度梯度在各坐标轴的分量为 10
10 2.等温面:在任一瞬时,连接温度 场内温度相同各点的曲面。显然, 沿着等温面,温度不变;沿着等温 面的法线方向,温度的变化率最大。 T+2△T T+△T T T-△T o x y n T 3.温度梯度:沿等温面的法线方向,指向温度增大方向的矢 量。用△T表示,其大小用 表示。其中n为等温面的法线方 向。温度梯度在各坐标轴的分量为