Elasticity
1 Elasticity
弹单性力等 第十二氯言
2
Chapter l2 Sheet bending D Summarization D8 12-1 Basic Hypothesis 812-2 Basic Functions D8 12-3 Internal Force of Cross Section 」§12-4 Boundary condition of sheet D8 12-5 Solution of Sheet Bending under Rectangular Coordinate [8 12-6 Axisymmetric Bending of Circular Sheet D8 12-7 Solution of Displacement of Sheet by Calculus of variation 3
3 Chapter12 Sheet bending Summarization § 12-1 Basic Hypothesis § 12-2 Basic Functions § 12-3 Internal Force of Cross Section § 12-4 Boundary Condition of Sheet § 12-5 Solution of Sheet Bending under Rectangular Coordinate § 12-6 Axisymmetric Bending of Circular Sheet § 12-7 Solution of Displacement of Sheet by Calculus of Variation
第十二章薄板弯曲 D]概述 >第一节基本假设 第二节基本方程 第三节横截面上的内力 D]第四节薄板的边界条件 ]第五节薄板弯曲的直角坐标求解 ]第六节圆形薄板的轴对称弯曲 >第七节变分法求薄板的位移
4 第十二章 薄板弯曲 概述 第一节 基本假设 第二节 基本方程 第三节 横截面上的内力 第四节 薄板的边界条件 第五节 薄板弯曲的直角坐标求解 第六节 圆形薄板的轴对称弯曲 第七节 变分法求薄板的位移
Summarization Sheet is different from thick board Generally if the ratio of the thickness of the board and the minimal dimension of the board face satisfies 80100b(58 We call the board sheet We call the plane halves 三==== the thickness of the board middle pl ane Choose the ordinate origin as a point of the middle plane and y axes of x and y in the middle plane, z perpendicular to it which are shown in fig
5 Summarization Sheet is different from thick board。Generally,if the ratio of the thickness of the board and the minimal dimension of the board face satisfies: 8 1 ~ 5 1 100 1 ~ 80 1 < < b t We call the board sheet. Choose the ordinate origin as a point of the middle plane, and axes of x and y in the middle plane, z perpendicular to it, which are shown in fig. . x y z o We call the plane halves the thickness of the board middle plane