Example of Linear System KEX. 2.5 Accumulator system y 以=∑x for arbitrary xIn and x2 k=-∞ y=∑x]y=∑x when x,/=ax,n+bx2I y=∑x=∑(ax]+bkl k ∑x]+b∑x]=q+b[ k k 1/30/2021 Zhongguo Liu_Biomedical Engineering_ Shandong Univ
27 1/30/2021 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Example of Linear System uEx. 2.5 Accumulator system n k y n x k a x k b x k ay n by n y n x k ax k bx k n k n k n k n k 1 2 1 2 3 3 1 2 n k y n x k 1 1 n k y n x k 2 2 x n and x n 1 2 for arbitrary x n ax n bx n when 3 1 2
Example 2.6 Nonlinear Systems Method: find one counterexample ◆For ◆ counterexample12+12≠=(+1) ◆For y7=10g( ◆ counterexample 10×1og101)≠1og10(10 28 1/30/2021 Zhongguo Liu_Biomedical Engineering_ Shandong Univ
28 1/30/2021 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Example 2.6 Nonlinear Systems uMethod: find one counterexample 2 2 2 u counterexample 1 1 11 2 u For y n x[n] log [ ] y n 10 x n 10 log 1 log 10 1 10 10 u counterexample u For
Properties of Discrete-time systems 2.2.3 Time-Invariant Systems Shift-Invariant Systems X,In r In=xuIn-n y2列=y1n=no 29 1/30/2021 Zhongguo Liu_Biomedical Engineering_ Shandong Univ
29 1/30/2021 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Properties of Discrete-time systems 2.2.3 Time-Invariant Systems uShift-Invariant Systems 2 1 n n0 x n x 2 1 0 y n y n n y n x1n T{‧ } 1 T{‧ }
Example of time-Invariant System Ex 2. 7 The accumulator as a Time-Invariant System y=∑x k =xn-no y=∑x]=∑水-n=∑xk]=yn=m k k k1 30 1/30/2021 Zhongguo Liu_Biomedical Engineering_ Shandong Univ
30 1/30/2021 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Example of Time-Invariant System uEx. 2.7 The Accumulator as a Time-Invariant System n k y n x k 1 0 x x n n 1 1 0 1 0 0 1 y n x k x k n x k y n n n n k n k n k
EX2.8 The compressor system x[n - f y[n]=x[Mn] <n<0 yIn=xen y[n-1]=8[n-1]=x[2(n-1 0 =xM=xMm1≠y]=M(m-) 31 1/30/2021 Zhongguo Liu_ Biomedical Engineering_ Shandong Univ
31 1/30/2021 Zhongguo Liu_Biomedical Engineering_Shandong Univ. Ex. 2.8 The compressor system xn T{‧ } yn xMn, n 0 T{‧ } 0 n 2n yn x2n x1 n xn n0 0 n 1 T{‧ } 2n1 0 0 yn n 0 yn1 n1 x2(n1) y1 n x1 Mn x Mn -n0 0 0 y n n x M n n