5-2量子跃迁 ■当扰动依赖于时间时,就不是能级问题 而是能级间的变化问题或跃迁问题
5-2 量子跃迁 ◼ 当扰动依赖于时间时,就不是能级问题, 而是能级间的变化问题或跃迁问题
含时微扰 H=Ho+H(t)=Ho+aw(t) Hom)=EmIm),(m n=8mn22m m=1 ino p =HY H()=∑,cn()eln ioCm=心∑ (t) Omm=(em-En)/h Wmn()=(mwn
含时微扰 W t m W n i c c e W t t c t e n i H H m m m n m m H H H t H W t m n m n m n m n i t t m n n i t n n t m m n m n n = = − = = = = = = = + = + − ( ) ( )/ ( ) ( ) ( ) , , 1 '( ) ( ) / 0 0 0
微扰展开 ()=∑cm)(t) (O) dt (1) iomnt(o) dt (O+1) iOmnt(p) t
微扰展开 ( 1) ( ) (1) (0) (0) ( ) 0 ( ) ( ) n i t m n m n n i t m n m n m m m c W e c dt d i c W e c dt d i c dt d i c t c t m n m n = = = = +
初始条件和一级修正后波函数 O → (t=0)=k,Ek, cO k 边 o mk (z) 平(t)=|k()+∑ncm(t)|mn() m(t)=e-Em(/n m)
初始条件和一级修正后波函数 m t e m t k t c t m t W e d i c t t k c t i t m m i t m m k k m m k m m k / (1) 0 (1) (0) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( 0) , , 0, − = = + = = = = =
T时刻处态m)m≠k之几率 Pmnk(t)=ml(t)) H mk (te lOmma
T时刻处态 之几率 2 0 2 (1) 2 ' ( ) 1 ( ) ( ) ( ) = = = t i m k m m k H e d i c t P t m t m k m ,m k