2.FreeVibrationofSingleMassSystemsecond-order eguation with constant coefficients二阶常系数方程m2m,z+C(z-g)+K(z-g)=0K艺+ (z - g) = 0(2-) +一mm9
second-order equation with constant coefficients 二阶常系数方程 2. Free Vibration of Single Mass System 2 2 2 ( ) ( ) 0 ( ) ( ) 0 m z C z q K z q C K z z q z q m m
K2n =assume :1m.m.の。:system natural circular frequency系统固有圆频率f。=2元2元LC:damping ratio阻尼比,=2/m,K
2 0 2 2 2 , C K n m m assume: 0 2 damping rati 2 o n C m K : 阻尼比, 0 0 0 2 : system natural circular frequency 1 2 2 K f m 系统固有圆频率
homogenous differential equation齐次方程z+2nz +のjz = 0 0.25, belong to small damp:. z = Ae-nt sin(Jo? -n?t + α)O, : system natural frequency with damp有阻尼固有频率,,=-n2ne-vibration scope attenuation according to振幅按e-nt衰减
2 2 0 0.25, belong to small damp sin( ) nt z Ae n t 2 2 0 : system natural frequency with damp vibration scope attenuation according to , r r nt nt n e e 有阻尼固有频率, 振幅按 衰减 2 0 homogenous differential equation 2 0 : z nz z 齐次方程
Z一nteA2t2Ot1-Ae-ntT1Attenuation vibration curve衰减振动曲线
Attenuation vibration curve 衰减振动曲线
Attenuation vibration inf luenced by E阻尼比对衰减振动的影响(1)-n2=の。Or =1a个=0,S=1= 0,=0big damp=no vibration大阻尼时系统不振动0 - 0r ~ 3% = 0, ~ 0o~0.25=0o有阻尼后振动频率变化不大
2 2 2 0 0 1 r n = - Attenuation vibration inf luenced by 0 0 0 0.25 3 r r % 有阻尼后振动频率变化不大 r r 1 0 = = big damp no vibration 大阻尼时系统不振动