祖流动 适用于Re<1时的斯托克斯沉降末速公式 48(0.-)2 (10-9) 1811 适用于Re=25~500时的阿连沉降末速公式 n1=d1( (10-10) 适用于Re=500~104的牛顿雷廷根沉降末速公式 8 (10-11)
26 适用于 Re <1 时的斯托克斯沉降末速公式 2 g( ) (10-9) 18 s s t d u r r 适用于 Re=25~500 时的阿连沉降末速公式 g ) (10 -10) 15 2 3 ( 3 s 2 r r r r t s u d 适用于 Re=500~10 4的牛顿—雷廷根沉降末速公式 (10 -11) ( ) 3 8 u d g s t s r r r
Fundarmentalof two-phase flow According to reynolds spectrum of sedimentation terminal velocity formula, we can obtain corresponding granularity spectrum of formula, namely boundary granularity, expressing with dB Substituting u=Red into (10-9),(10-10),(10-11) and take into boundary value of re then obtain boundary granularity For re sl. stokes formula 18 Vg(p, -P)p (10-12) For re=2300. A-Lian formula d2=0.28 ~3.43 (10-13) (P、-p) (-p) 27
27 According to Reynolds spectrum of sedimentation terminal velocity formula, we can obtain corresponding granularity spectrum of formula, namely boundary granularity,expressing with dB , Substituting into(10-9),(10-10),(10-11) and take into boundary value of Re ,then obtain boundary granularity: s t d u r Re 2 3 2 2 3 3 For Re 1, Stokesformula 18 (10-12) g( ) For Re 2 ~ 300, A-Lian formula 0.28 ~ 3.4 (10-13) ( ) ( ) B s B s s d d r r r r r r r r r
祖流动 根据沉降末速公式的雷诺数范围也可求出各公式相应的 粒度范围,并称之为边界粒度,用d表示,将4=m代入 10-9),(10-10),(10-11)三式,并代入Re的边 界值,即可解得边界粒度为: 适于Re≤时的斯托克斯公式 181 g(ps-p)p (10-12) 适于Re=2~300的阿连公式 lB=0.283 3.4 (10-13) V(。-p) (p-pp 28
28 根据沉降末速公式的雷诺数范围也可求出各公式相应的 粒度范围,并称之为边界粒度,用dB表示,将 代入 (10-9),(10-10),(10-11)三式,并代入 Re 的边 界值,即可解得边界粒度为: s t d u r Re (10 -13) ( ) ~ 3.4 ( ) 0.28 Re 2 ~ 300 (10 -12) ( ) 18 Re 1 3 2 3 2 3 2 r r r r r r r r r s s B s B d g d 适于 的阿连公式 适于 时的斯托克斯公式
Fundarmentalof two-phase flow For r21000, Newton- Reutlingen formula d2≥9.12 (10-14) (p。-p) Example 10-1 One spherical particle, particle diameter d=0.09 mm density p=33×103kg g/m3, free sediment in water, density of water oF1000 kg/m, viscosity coefficient u=0.001 Pa s, find (1) sedimentation terminal velocity of particle ?(2) If sedimentation in atmosphere u=1.82X1075Pa'S, P-12kg/m3, find sedimentation terminal velocity? Solution: There are three formula according to spectrum of Re SO, applying test method (1) For free sediment in water, applying(Re<l)formula to check d3(P、-p)g(0.09×103)(3300-1000×981=00102m/s 184 18×0.001
29 2 3 For 1000, Newton- Reutlingen formula 9.12 (10-14) ( ) B s R d r r r Example 10-1 One spherical particle , particle diameter ds =0.09 mm ,density rs =3.3×10 3 kg/m3 , free sediment in water,density of water r=1000 kg/m3 ,viscosity coefficient 0.001 Pa ·s , find(1) sedimentation terminal velocity of particle ?(2)If sedimentation in atmosphere =1.82×10-5Pa·s, r1.2kg/m3 , find sedimentation terminal velocity? Solution:There are three formula according to spectrum of Re , so, applying test method: (1) For free sediment in water ,applying(Re<1)formula to check 0.0102 m/s 18 0.001 (0.09 10 ) (3300 1000) 9.81 18 ( ) 2 3 2 d r r g u s s t
祖流动 适用于R≥1000时的牛顿一雷廷根公式 dB≥9.12 (10-14) V(Ps-P)p 例题10—1一圆球形颗粒,粒径d=0.09mm,密度p=3.3×103 kg/m3,在水中自由沉降,水的密度p=1000kg/m3,粘性系数 1=0.001Pas,求(1)颗粒的沉降末速为多少?(2)若在 182×10-Pas,p=1.2kg/m3的空气中自由沉降,其沉降末速又为 多少? 解:在计算沉降末速时,有三个公式按Re范围选用,因此应 采用试算法。 (1)在水中自由沉降按层流(Re<1)公式试算 4<2(p.-)3(009×103)(300-10009810.0102m/s 184 18×0.001
30 (10 -14) ( ) 9.12 1000 3 2 r r r s B d 适用于R 时的牛顿 —雷廷根公式 例题10-1 一圆球形颗粒,粒径ds =0.09 mm ,密度 rs =3.3×10 3 kg/m3 ,在水中自由沉降,水的密度 r=1000 kg/m3 ,粘性系数 0.001 Pa ·s , 求(1)颗粒的沉降末速为多少?(2)若在 = 1.82×10-5Pa·s, r1.2kg/m3 的空气中自由沉降,其沉降末速又为 多少? 解:在计算沉降末速时,有三个公式按 Re 范围选用,因此应 采用试算法。 (1)在水中自由沉降按层流(Re<1)公式试算 0.0102 m/s 18 0.001 (0.09 10 ) (3300 1000) 9.81 18 ( ) 2 3 2 d r r g u s s t