第七章吸收 §1吸收过程概述 7-1吸收定义与工业背景 在合成氨工厂,合成氨的原料气中含有30%CO2,如何将CO2从原料气中分离? 在焦化厂,焦炉气中含有多种气体,如CO,H2,NH,苯类等,如何将NH3从焦炉气 中分离? 在硫酸厂,硫铁矿经焙烧氧化,可以得到SO3,如何由SO3制造硫酸? 为了解决上述问题,化学工程师提出了一种化工单元操作一—吸收。 什么叫吸收操作?一一利用组成混合气体各组分在溶剂中溶解度不同,来分离气体混合 物的操作,称为吸收操作。 如图7-1所示,这就是从合成氨原料气中回收CO2的工业流程。乙醇胺对CO2有较大 溶解度,选乙醇胺做溶剂。溶剂要回收循环使用,又有了CO2解吸塔。吸收塔、解吸塔、 锅炉就构成了CO2回收的工段或车间。如红线框所示,进工段的是合成氨原料气,出工段的 是CO2和低浓CO2的合成氨气 低浓CO 乙醇胺 COr+lbO 的合成氨气 却冷凝 乙醇胺 含30%C02 的合成氨气 含OO的乙醇胺 图7-1从合成氨原料气中回收CO2的流程 7-2吸收的用途与分类 吸收的工业应用分三类: (1)分离混合气体,是最主要的应用。 (2)气体净化。例如某厂放空气体中含有有毒有害气体A,不符合环境保护的排放标 准,则选用合适溶剂将有害气体吸收,使该厂放空气体达到排放标准 (3)制备液体产品。例如用水吸收氯化氢气体制备盐酸,用93%硫酸吸收SO3制备硫 酸等等 二、吸收操作工业分类 按有无化学反应,分物理吸收和化学吸收。例如用NaOH吸收CO2就是化学吸收
1 第七章 吸收 §1 吸收过程概述 7-1 吸收定义与工业背景 在合成氨工厂,合成氨的原料气中含有 30% CO2,如何将 CO2 从原料气中分离? 在焦化厂,焦炉气中含有多种气体,如 CO,H2,NH3,苯类等,如何将 NH3 从焦炉气 中分离? 在硫酸厂,硫铁矿经焙烧氧化,可以得到 SO3,如何由 SO3 制造硫酸? 为了解决上述问题,化学工程师提出了一种化工单元操作——吸收。 什么叫吸收操作?——利用组成混合气体各组分在溶剂中溶解度不同,来分离气体混合 物的操作,称为吸收操作。 如图 7-1 所示,这就是从合成氨原料气中回收 CO2 的工业流程。乙醇胺对 CO2 有较大 溶解度,选乙醇胺做溶剂。溶剂要回收循环使用,又有了 CO2 解吸塔。吸收塔、解吸塔、 锅炉就构成了 CO2回收的工段或车间。如红线框所示,进工段的是合成氨原料气,出工段的 是 CO2 和低浓 CO2 的合成氨气。 图 7-1 从合成氨原料气中回收 CO2 的流程 7-2 吸收的用途与分类 一、吸收的工业应用分三类: (1)分离混合气体,是最主要的应用。 (2)气体净化。例如某厂放空气体中含有有毒有害气体 A ,不符合环境保护的排放标 准,则选用合适溶剂将有害气体吸收,使该厂放空气体达到排放标准。 (3)制备液体产品。例如用水吸收氯化氢气体制备盐酸,用 93% 硫酸吸收 SO3 制备硫 酸等等。 二、吸收操作工业分类。 按有无化学反应,分物理吸收和化学吸收。例如用 NaOH 吸收 CO2 就是化学吸收
按溶质气体的数目,分单组分吸收和多组分吸收。 按有无明显热效应,分等温吸收与非等温吸收 本章重点讨论的是单组分等温的物理吸收。 7-3吸收计算引论 如图7-2所示,填料层高度Z与什么有关? 图7-2吸收塔示意图 首先想到Z与分离的物系性质有关。某溶剂对某溶质的溶解度越大,越易吸收,Z 会越小。这与分子间的力有关,即物系的相平衡关系。 与传质相界面的面积有关。单位体积填料提供的有效传质面积越大,达到相同分离 要求的Z会越小。此即与填料的形状有关。衡量填料形状的因素,可用传质速率与传质系 数表达 三、若物系相同,填料形状亦相同,但处理的原料气量()和原料气的进出口组成(y和 y2)不同,所以Z又与,L,y,y2,x有关,此即与物料衡算有关。下面将分相平衡关 系、传质速率、物料衡算等三个方面来展开吸收过程 §2吸收相平衡关系 7-4气体的溶解度曲线 1.何谓溶解度?一一在一定温度与压力下,溶质气体最大限度溶解于溶剂中的量,即溶 解度。如图7-3所示,NH3溶于水的速率等于NH3逸出水的速率,此时达到动平衡。动平衡 时,水中溶解的氨的量,称为在该温度、压力下的氨在水中的溶解度
2 按溶质气体的数目,分单组分吸收和多组分吸收。 按有无明显热效应,分等温吸收与非等温吸收。 本章重点讨论的是单组分等温的物理吸收。 7-3 吸收计算引论 如图 7-2 所示,填料层高度 Z 与什么有关? 图 7-2 吸收塔示意图 一、首先想到 Z 与分离的物系性质有关。某溶剂对某溶质的溶解度越大,越易吸收, Z 会越小。这与分子间的力有关,即物系的相平衡关系。 二、与传质相界面的面积有关。单位体积填料提供的有效传质面积越大,达到相同分离 要求的 Z 会越小。此即与填料的形状有关。衡量填料形状的因素,可用传质速率与传质系 数表达。 三、若物系相同,填料形状亦相同,但处理的原料气量 (V ) 和原料气的进出口组成 1 ( y 和 ) 2 y 不同,所以 Z 又与 1 2 1 V,L,y ,y ,x 有关,此即与物料衡算有关。下面将分相平衡关 系、传质速率、物料衡算等三个方面来展开吸收过程。 §2 吸收相平衡关系 7-4 气体的溶解度曲线 1.何谓溶解度?——在一定温度与压力下,溶质气体最大限度溶解于溶剂中的量,即溶 解度。如图 7-3 所示,NH3 溶于水的速率等于 NH3 逸出水的速率,此时达到动平衡。动平衡 时,水中溶解的氨的量,称为在该温度、压力下的氨在水中的溶解度
N 水 图7-3气体溶解示意图 2.溶解度曲线一一平衡曲线 若固定温度、压力不变,测得某动平衡下,溶液上方氨的分压为P1,此时溶于水的氨 的浓度为x:再改变浓度为x2,测得上方氨分压为P2;…依次类推,改变氨的浓度为xn, 测得溶液上方氨的分压为pn,如图74所示。将这n个点,标绘在图上,即得在一定温度、 压力下的溶解度曲线。 X 图74实测px曲线示意图 【例7-1】已知20℃时,在一个大气压下氨气溶解于水的溶解度数据如下表所示,据 此画出的溶解度曲线,横坐标用x(摩尔分率),纵坐标用p(kPa) 氨水浓度kgNH3100kg水22.53457.1015 NH3的平衡分压mmBg 1 518224931.75069.6114 解:以第六组数据为例计算如下 7.5/17 00736p 101.3=6.66kPa 7.5/17+100/18 将计算结果列在下表中 氨水浓度x(摩尔分率)0.02070258003080.04070.05030736009580.137 NH3的平衡分压kPa 1.6 2 2423.324226.66928152 画出溶解度曲线p'-x,如图7-5所示
3 图 7-3 气体溶解示意图 2.溶解度曲线——平衡曲线。 若固定温度、压力不变,测得某动平衡下,溶液上方氨的分压为 p1 ,此时溶于水的氨 的浓度为 1 x ;再改变浓度为 2 x ,测得上方氨分压为 2 p ;……依次类推,改变氨的浓度为 n x , 测得溶液上方氨的分压为 n p ,如图 7-4 所示。将这 n 个点,标绘在图上,即得在一定温度、 压力下的溶解度曲线。 图 7-4 实测 p-x 曲线示意图 【例 7-1】 已知 20℃时,在一个大气压下氨气溶解于水的溶解度数据如下表所示,据 此画出的溶解度曲线,横坐标用 x (摩尔分率),纵坐标用 * p (kPa)。 氨水浓度 kgNH3 100kg水 2 2.5 3 4 5 7.5 10 15 NH3 的平衡分压 mmHg 12 15 18.2 24.9 31.7 50 69.6 114 解:以第六组数据为例计算如下 0.0736 7.5 17 100 18 7.5 17 = + x = p 101.3 6.66 kPa 760 * 50 = = 将计算结果列在下表中 氨水浓度 x (摩尔分率) 0.0207 0.0258 0.0308 0.0407 0.0503 0.0736 0.0958 0.137 NH3 的平衡分压 kPa 1.6 2 2.42 3.32 4.22 6.66 9.28 15.2 画出溶解度曲线 p − x * ,如图 7-5 所示
Ik 20℃ 10 0.020.060.100.14X 图7-5【例7-1】附图 7-5亨利定律 上节中,通过实验的方法,可以得到平衡曲线,平衡线能否用一简单的解析式表达呢? 对于理想溶液,溶质在溶液中浓度(x)与溶液上方溶质的平衡分压(P)服从拉乌尔定 PA=Pa 对于非理想溶液,在低浓度下,服从亨利定律 p 10℃ F 0.050.10 图7-6亨利定律示意图 由图7-6看出,OD是平衡曲线,但在x=0~0.10的这一段,可以写成亨利定律的表 达式 E·x E称为亨利系数,x为溶质在溶液中所占的摩尔分率 亨利定律还可写成 H 比例系数H愈大,表明同样分压下p的溶解度愈大。H可称为溶解度系数,C为单
4 图 7-5 【例 7-1】附图 7-5 亨利定律 上节中,通过实验的方法,可以得到平衡曲线,平衡线能否用一简单的解析式表达呢? 对于理想溶液,溶质在溶液中浓度 (x) 与溶液上方溶质的平衡分压 ( ) * p 服从拉乌尔定 律。 p p x A A = * 0 对于非理想溶液,在低浓度下,服从亨利定律。 图 7-6 亨利定律示意图 由图 7-6 看出,O D 是平衡曲线,但在 x = 0 ~ 0.10 的这一段,可以写成亨利定律的表 达式。 p = E x * E 称为亨利系数, x 为溶质在溶液中所占的摩尔分率。 亨利定律还可写成: H C p = * 比例系数 H 愈大,表明同样分压下 * p 的溶解度愈大。 H 可称为溶解度系数, C 为单
位体积溶液中溶质气体的千摩尔数kmol·m-3 亨利定律最常用的是下列形式: 式中,y——气相中溶质的摩尔分率; 液相中溶质的摩尔分率 m——相平衡常数(亦称亨利常数) 7-6亨利系数之间的关系 单位:E=P→Pa H=C→ kmol. m 1.E与m的换算 P⊥E p=P·y代入式(a) E →n 2.E与H的换算 C C H H C=溶质的kmC 溶质的kmol 溶液的体积m(溶质的kmol+溶剂的kmo)× M kg. kmor Pkg·m M/p, Mn=M,(1-x)+M≈M,(低浓度时,x较小,x→>0) PL=p C=xP,代入式(b)得 HH·M E·M
5 位体积溶液中溶质气体的千摩尔数 kmol·m-3 亨利定律最常用的是下列形式: y = mx * ………………(Ⅰ) 式中, * y ——气相中溶质的摩尔分率; x ——液相中溶质的摩尔分率 m——相平衡常数(亦称亨利常数) 7-6 亨利系数之间的关系 单位: Pa x p E = * Pa kmol m p C H 3 * − = / * = x y m 1. E 与 m 的换算 = = y mx p Ex * * m E y p = * * ………………(a) * * p = P y 代入式 (a) m E y P y = * * P E m = 2. E 与 H 的换算 = = H C p p Ex * * H C Ex = ………………(b) ( ) 3 3 1 − − + = = k g m kmol kmol M k g kmol kmol m kmol C L m 溶质的 溶剂的 溶质的 溶液的体积 溶质的 数 Mm L x C = ( ) m s Mx Ms M = M 1− x + (低浓度时, x 较小, x →0 ) 而 L = s s s M x C = ,代入式 (b) 得 s s H M x H C Ex = = s s E M H =